Exercises \# 1: Review of probability theory

Léo Neufcourt

September 4, 2019

We denote the combination numbers $C_{n}^{p}:=\frac{n!}{p!(n-p)!}:=\frac{n(n-1) \cdots(n-p+1)}{1 \cdot 2 \cdots p}$.

Exercise 1 (Martin Gardner, Scientific American (1959)).
(i) Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?
(ii) Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Exercise 2. What is the probability to obtain exactly 3 hearts when drawing 5 cards in a deck of 32 cards (containing exactly 8 hearts)...
(i) ...simultaneously?
(ii) ...successively without replacement?
(iii) ...successively with replacement?

Exercise 3. An urn contains 4 white balls and 3 black balls. You draw 3 balls, one by one, without remise. What is the probability that the first ball is white, the second white and the third black?

Exercise 4.

1. State (and prove?) Bayes' formula.
2. Mr X has 100 dices among which 25 are loaded (unfair). For each piped dice, the probability to obtain a 6 is 0.5 .
(a) Mr X draws a randomly selected dice and obtains a 6 . What is the probability that this dice is loaded?
(b) Let $n \in \mathbb{N}^{*}$ be a positive integer. Mr X draws n times a randomly selected dice and obtains a 6 each time. What is this time the probability p_{n} that this dice is loaded?
(c) Determine $\lim _{n \rightarrow \infty} p_{n}$. What does this mean?
