Exercises # 1: Review of probability theory

Léo Neufcourt

September 6, 2019

We denote the combination numbers $C_n^p := \frac{n!}{p!(n-p)!} := \frac{n(n-1)\cdots(n-p+1)}{1\cdot 2\cdots p}$.

Exercise 1 (Martin Gardner, *Scientific American* (1959)).

- (i) Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?
- (ii) Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Solution 1. In both cases the state space is $\Omega := \{(G,G), (G,B), (B,G), (BB)\}$ and all events have the same probability $\frac{1}{4}$.

(i) Jones family. The event "the older child is a girl" is the event (subset of Ω) $A := \{(G,G), (G,B)\}$, with $\mathbb{P}(A) = \frac{2}{4} = \frac{1}{2}$. The event "both children are girls" is the event B := (G,G), with $\mathbb{P}(B) = \frac{1}{4}$. Thus the requested probability is

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B)}{\mathbb{P}(A)} = \frac{1}{2}.$$

(ii) Smith family. The event "at least one of the children is a boy" is the event $C := \{(B, B), (B, G), (G, B)\}$, with $\mathbb{P}(C) = \frac{3}{4}$. The event " both children are boys" is the event D := (B, B), with $\mathbb{P}(D) = \frac{1}{4}$. Thus the requested probability is

$$\mathbb{P}(D|C) = \frac{\mathbb{P}(C \cap D)}{\mathbb{P}(C)} = \frac{\mathbb{P}(D)}{\mathbb{P}(C)} = \frac{1}{3}.$$

Exercise 2. What is the probability to obtain exactly 3 hearts when drawing 5 cards in a deck of 32 cards (containing exactly 8 hearts) ...

- $(i) \ldots simultaneously?$
- (ii) ... successively without replacement?
- (iii) ... successively with replacement?

Solution 2. (i) We take here as sample space Ω the set of the 5-element subsets of a set of 32 elements, which contains a total of

$$card(\Omega) = C_{32}^5 = \frac{32 \times 31 \times 30 \times 29 \times 28}{5 \times 4 \times 3 \times 2} = 8 \times 31 \times 29 \times 28 = 201,376$$

possible cases, all with the same probability. The favorable cases correspond to drawing exactly 3 cards among the 8 hearts and 2 cards among the remaining 24 (which are not hearts). This adds up to

$$C_8^3 C_{24}^2 = \frac{8 \times 7 \times 6}{3 \times 2} \frac{\times 24 \times 23}{2} = 56 \times 12 \times 23 = 15,456$$

favorable cases, i.e. exactly 15,456 hands of 5 cards contain exactly 3 hearts. Thus the probability to obtain exactly 3 hearts is

$$p = \frac{15,456}{201,376} = \frac{56 \times 12 \times 23}{8 \times 31 \times 29 \times 28} = \frac{3 \times 23}{31 \times 29} = \frac{69}{899} = 0.076\dots$$

(ii) We take here as sample space Ω the set of sequence of 5 elements drawn without replacement in a set of 32 elements, which contains a total of

$$card(\Omega) = 32 \times 31 \times 30 \times 29 \times 28 = 24,165,120$$

possible cases, all with the same probability. The favorable cases can be first split according to the location of the 3 hearts, for which there are $C_5^3 = 10$ possibilities. For each of these locations there are $8 \times 7 \times 6$ choices for the heart cards and 24×23 choices for the remaining cards (which are not hearts). This adds up to

$$C_5^3 \times (8 \times 7 \times 6) \times (24 \times 23) = 1,854,720$$

favorable cases, i.e. exactly 1,854,720 sequences of 5 cards drawn successively without replacement contain exactly 3 hearts. Thus the probability to obtain exactly 3 hearts is

$$p = \frac{1,854,720}{24,165,120} = \frac{10 \times (8 \times 7 \times 6) \times (24 \times 23)}{32 \times 31 \times 30 \times 29 \times 28} = \frac{3 \times 23}{31 \times 29} = \frac{69}{899} = 0,076\dots$$

which is the same as before.

(iii) We take here as sample space Ω the set of sequence of 5 elements drawn with replacement in a set of 32 elements, which contains a total of

$$card(\Omega) = 32^5 = 33,554,432$$

possible cases, all with the same probability. The favorable cases can be first split according to the location of the 3 hearts, for which there are $C_5^3 = 10$ possibilities. For each of these locations there are 8^3 choices for the heart cards and 24^2 choices for the remaining cards (which are not hearts). This adds up to

$$C_5^3 \times 8^3 \times 24^2 = 2,949,120$$

favorable cases, i.e. 2,949,120 successive draws of 5 cards with replacement contain exactly 3 hearts. Thus the probability to obtain exactly 3 hearts is

$$p = \frac{2,949,120}{33,554,432} = 0.087\dots$$

This corresponds to a Bernouilli scheme!

Exercise 3. An urn contains 4 white balls and 3 black balls. You draw 3 balls, one by one, without remise. What is the probability that the first ball is white, the second white and the third black?

Solution 3. To make things transparent we identify the balls of the same color with numbers, which doesn't have any impact on probabilities. The seven balls are thus W_1 , W_2 , W_3 , W_4 , B_1 , B_2 , and B_3 . We take for sample space Ω the set of sequences of 3 elements drawn without replacement in a universe of 7 elements, which contains a total of

$$card(\Omega) = A_7^3 \left(= 3! \ C_7^3 \right) = 7 \times 6 \times 5 = 210$$

possible cases, all with the same probability. For favorable cases, there are $4 \times 3 = 12$ draws of the first two balls such that both are white, and for each of these draws there are 3 possibilities for which the third ball is black. This adds up to $4 \times 3 \times 3 = 36$ favorable cases. Thus the requested probability is

$$\frac{4 \times 3 \times 3}{7 \times 6 \times 5} = \frac{2 \times 3}{7 \times 5} = \frac{6}{35} = 0,17\dots$$

Exercise 4.

- 1. State (and prove?) Bayes' formula.
- 2. Mr X has 100 dices among which 25 are loaded (unfair). For each piped dice, the probability to obtain a 6 is 0.5.
 - (a) Mr X draws a randomly selected dice and obtains a 6. What is the probability that this dice is loaded?
 - (b) Let $n \in \mathbb{N}^*$ be a positive integer. Mr X draws n times a randomly selected dice and obtains a 6 each time. What is this time the probability p_n that this dice is loaded?
 - (c) Determine $\lim_{n\to\infty} p_n$. What does this mean?

Solution 4.

- 1. See textbook.
- 2. (a) Denoting A the event "the dice is loaded" and B the event "Mr X obtains a the outcome 6", the requested probability is $\mathbb{P}(A|B)$. We have $\mathbb{P}(A) = \frac{25}{100} = \frac{1}{4} \neq 0$ and $\mathbb{P}(\bar{A}) = 1 \frac{1}{4} = \frac{3}{4}$. Also, $\mathbb{P}(B|A) = \frac{1}{2}$ and $\mathbb{P}(B|\bar{A}) = \frac{1}{6}$. Hence,

$$\mathbb{P}(B) = \mathbb{P}(A) \times \mathbb{P}(B|A) + \mathbb{P}(\bar{A}) \times \mathbb{P}(B|\bar{A}) = \frac{1}{4} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{6} = \frac{1}{4} \neq 0.$$

From Bayes' formula, the probability that the dice is loaded is

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A)\mathbb{P}(B|A)}{\mathbb{P}(A)\mathbb{P}(B|A) + \mathbb{P}(\bar{A})\mathbb{P}(B|\bar{A})} = \frac{1}{2}.$$

(b) Denoting A the event "the dice is loaded" and B_n the event "Mr X obtain n times the outcome 6", the requested probability is $\mathbb{P}(A|B_n)$.

We still have $\mathbb{P}(A) = \frac{1}{4} \neq 0$ and $\mathbb{P}(\bar{A}) = \frac{3}{4}$. Also, $\mathbb{P}(B_n|A) = \frac{1}{2^n}$ and $\mathbb{P}(B_n|\bar{A}) = \frac{1}{6^n}$. Hence,

$$\mathbb{P}(B_n) = \mathbb{P}(A) \times \mathbb{P}(B_n | A) + \mathbb{P}(\bar{A}) \times \mathbb{P}(B_n | \bar{A}) = \frac{1}{4} \times \frac{1}{2^n} + \frac{3}{4} \times \frac{1}{6^n} \neq 0$$

From Bayes' formula, the probability that the dice is loaded is

$$p_n := \mathbb{P}(A|B_n) = \frac{\mathbb{P}(A)\mathbb{P}(B_n|A)}{\mathbb{P}(A)\mathbb{P}(B_n|A) + \mathbb{P}(\bar{A})\mathbb{P}(\bar{B_n|A)} = \frac{\frac{1}{4} \times \frac{1}{2^n}}{\frac{1}{4} \times \frac{1}{2^n} + \frac{3}{4} \times \frac{1}{6^n}} = \frac{1}{1 + \frac{1}{3^{n-1}}}.$$

(c) $\lim_{n\to\infty} p_n = 1$: as the intuition suggests, a dice producing repeatedly and indefinitely the same value must be loaded.

Solution 5.

import numpy as np
def roll_a_dice(n = 1, p = 7):
 x = np.random.randint(1, high = p, size = n)
 return x