
Exercises # 3: Conditioning

Léo Neufcourt

September 27, 2019

Please do all problems. Due at the beginning of class on September 27.
Python codes must be sent by email before September 27, 12:40pm.

Exercise 1. We consider a square polygon ABCD and its center O and
denote Γ := {A,B,C,D,O}. A tick is moving randomly in Γ by jumping
from one point to another, with the only constraint that if a jump joins two
vertices of the square ABCD then they most be adjacent. For instance, a tick
in A can jump in B, D or O; a tick in O can jump to A, B, C or D. At every
step all allowed moves have the same probability. The tick cannot stay at the
same location between two steps. At the beginning, i.e. before its first jump,
the tick is in O. For every integer n we denote On the event “the tick is at
O after its nth jump”. We denote pn := P(On) the probability, with p0 = 1.
We define similarly the events An, Bn, Cn and Dn.

(i) Compute p1 and p2

(ii) For every integer n ≥ 1 show (e.g. by recurrence over n) that

P (An) = P (Bn) = P (Cn) = P (Dn).

(iii) Show that for every integer n we have

pn+1 =
1

3
(1− pn)

and deduce the value of pn for n ∈ N

(iv) Based on the previous questions – what proportion of time does the tick
spend on each of the points of Γ?
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Solution 1.
(i) Starting in O the tick cannot be in O after its first jump, so p1 = 0. After
the first jump, the tick is in A, B, C or D with the same probability. In every
case, it will come back to O after the second jump with probability 1

3
, thus

p2 = 1
3
.

(Formally:

p2 = P(O2) = P(O2|A1)P(A1)+P(O2|B1)P(B1)+P(O2|C1)P(C1)+P(O2|D1)P(D1)

from the total probability formula, with P(A1) = P(B1) = P(C1) = P(D1) = 1
4

and P(O2|A1) = P(O2|B1) = P(O2|C1) = P(O2|D1) = 1
3
.)

(ii) Let us show the property

Hn : P (An) = P (Bn) = P (Cn) = P (Dn)

by recurrence over n.
We have seen that H1 is true. Let us suppose that Hn is true and prove

Hn+1. The events An, Bn, Cn, Dn and On are disjoint and their union covers
all the possible outcomes, so we can use the formula of total probability

pn+1 = P(On+1)

= P(On+1|An)P(An) + P(On+1|Bn)P(Bn) + P(On+1|Cn)P(Cn) + P(On+1|D1)P(Dn).

Now,

P (An+1|An) = P (An+1|Cn) = 0,

P (An+1|Bn) = P (An+1|Dn) =
1

3
,

P (An+1|On) =
1

4
.
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whence

P (An+1) =
1

3
P (Bn) +

1

3
P (Dn) +

1

4
P (On)

=
2

3
P (An) +

1

4
P (On)

=
2

3
P (Bn) +

1

4
P (On) = P (Bn+1)

=
2

3
P (Cn) +

1

4
P (On) = P (Cn+1)

=
2

3
P (Dn) +

1

4
P (On) = P (Dn+1),

using Hn. This shows Hn+1, and we conclude that Hn is true for every
n ≥ 1.

(iii) We know from (ii) that pn+1 = 1 − 4P (An+1) and pn = 1 − 4P (An).
Follow P (An+1) = 2

3
P (An) + 1

4
pn = 2

3
× 1

4
(1− pn) + 1

4
pn and

pn+1 =
1

3
(1− pn).

This a classical arithmetico-geometric sequence. We find possible candidates
for the limit by solving the equation ` = 1

3
(1− `) which has a unique solution

1
4
. We consider next the sequence vn := pn− `, which satisfies the recurrence

relation vn+1 = −1
3
vn for every n ≥ 0. The general term of this geometric

sequence is vn = v0(−1
3
)n = 3

4
(−1

3
)n, n ≥ 0, from which pn = 1

4
+ 3

4
(−1

3
)n.

(iv) The proportion of time spent in O after n steps is

p0 + p1 + ... + pn
n + 1

−−−→
n→∞

` =
1

4

as the Cesaro sum of the converging sequence pn −−−→
n→∞

`.

Hence the proportion of time (at the limit) spent in O is 1
4
, and by sym-

metry the proportion of time spent on each of A, B, C and D is 3
16

.

Exercise 2. Let n ≥ 2 and X1, X2, ..., Xn be independent random variables
with the same distribution and suppose that they have finite expectation m :=
E[X1]. Let Sn :=

∑n
i=1 Xi.

1. Compute E[Sn|Xi] for 1 ≥ i ≥ n.
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2. Compute E[Xi|Sn] for 1 ≥ i ≥ n.

3. (Bonus) Suppose that n = 2 and that Xi have a common density f .
What is the conditional density of X1 given S2?

Solution 2. 1.

E[Sn|Xi] = E[
n∑

j=1

Xj|Xi] (1)

=
n∑

j=1

E[Xj|Xi] (2)

= E[Xi|Xi] +
∑
j 6=i

E[Xj|Xi] (3)

= Xi +
∑
j 6=i

E[Xj] (4)

= Xi + (n− 1)m, (5)

where we used that the Xj are independent (4) and have the same distribution
(5).

2. By symmetry (see also next problem) the terms E[Xi|Sn] are the same for
all i, thus

E[Xi|Sn] =
1

n

n∑
j=1

E[Xj|Sn]

=
1

n
E[

n∑
j=1

Xj|Sn]

=
1

n
E[Sn|Sn]

=
Sn

n

3. Let us write X := X1 and Y := X2. From Solution 2 we have the joint
distribution

FX,X+Y (x, z) = E[FX(min(x, z − Y )].
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In the case of continuous random variables this is∫ +∞

−∞
FX(min(x, z − y)fX(y)dy

= FX(x)

∫ z−x

−∞
fX(y)dy +

∫ +∞

z−x
FX(z − y)fX(y)dy

= FX(x)FX(z − x) +

∫ +∞

z−x
FX(z − y)fX(y)dy

and the joint density of X and X + Y is thus

fX,X+Y (x, z) =
∂2

∂x∂z
FX,X+Y (x, z)

=
∂2

∂x∂z
(FX(x)FX(z − x)) +

∂2

∂z∂x

∫ +∞

z−x
FX(z − y)fX(y)dy

=
∂

∂x
(FX(x)fX(z − x)) + FX(x)

∂

∂z
fX(z − x)

= fX(x)fX(z − x).

Finally, the conditional density

fX|X+Y (x|z) =
fX,X+Y (x, z)

fX+Y (z)
=

fX(x)fY (z − x)∫ +∞
−∞ fX(x)fY (z − x)

.

Exercise 3. Show that if X and Y are two independent random variables
with the same distribution, we have

E[X − Y |X + Y ] = 0

.

Solution 3. The devil is in the detail. The question is to show E[X|X+Y ] =
E[Y |X + Y ]. This is true because X and Y have the same conditional
distribution given X + Y , which follows from a symmetry argument: for
instance, denoting Z := X +Y and FX , FY , FX,Z, FY,Z the respective (joint)
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c.d.f. of X, Y , (X,Z), (Y, Z), we have

FX,Z(x, z) = P(X ≤ x, Z ≤ z) (6)

= E[P(X ≤ x, Z ≤ z|Y )] (7)

= E[P(X ≤ x,X + Y ≤ z|Y )] (8)

= E[P(X ≤ x,X ≤ z − Y |Y )] (9)

= E[FX(min(x, z − Y )] (10)

= E[FY (min(x, z − Y )] (11)

= E[FY (min(x, z −X)] (12)

= FY,Z(x, z) (13)

where (7) and (8) follow from X and Y having the same distribution, and
(9) from a symmetry argument. Thus, we also have FX|X+Y = FY |X+Y .

Exercise 4 (Python). Plot the expectation of Yn := maxi=1,...,n Xi, when Xi

are i.i.d. standard normal variables, as a function of 1 ≤ n ≤ 20. You are
encouraged to use the law of large numbers to approximate the expectations
(thus avoiding formal calculations), but make sure you keep a relative ap-
proximation errors below 1%.

Hint: Once you have computed the expectations E[Yn] for all n and store
them in a numpy array y of size 20, you can use the library matplotlib for
plotting. A minimal template:

import numpy as np
import ma t p l o t l i b . p y p l o t as p l t

# compute y . . .

x = np . arange (1 , 21)
f i g , ax = p l t . s u b p l o t s ( f i g s i z e = (10 , 10) )
ax . p l o t ( x , y )

Solution 4.

import numpy as np
import ma t p l o t l i b
ma t p l o t l i b . rcParams [ ’ math tex t . f o n t s e t ’ ] = ’cm ’
from ma t p l o t l i b import p y p l o t as p l t
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n MC = 1000
n min = 1
n max = 21
n t e s t = 5

de f s imu l a t i on s ( n min = 1 , n max = 21 , n MC = 1000 , n t e s t = 5)
:
x = range ( n min , n max )
y = np . z e r o s ( ( n max − n min , n t e s t ) )
f o r k , n in enumerate ( x ) :

z = np . z e r o s ( (n MC, n t e s t ) )
f o r i in range (n MC) :

f o r j in range ( n t e s t ) :
z [ i , j ] = np . random . normal ( s i z e = n) .max ( )

y [ k ] = z .mean( a x i s = 0)
re tu rn x , y

f o r n MC in [1000 , 5000 , 10000 , 50000 ] :
x , y = s imu l a t i on s (n MC = n MC)
f i g , ax = p l t . s u b p l o t s ( f i g s i z e = (20 , 20) )
ax . s e t x s c a l e ( ’ l o g ’ )
ax . p l o t ( x , y .mean( a x i s = 1) , c o l o r = ’ dodge r b l u e ’ , l a b e l =

’ e s t ima t e ’ )
ax . f i l l b e t w e e n ( x , y [ : , 0 ] ∗ . 99 , y [ : , 0 ] ∗ 1 .01 , c o l o r = ’

dodge r b l u e ’ , a lpha = .3 , l a b e l = r ’ $1\% \ band$ ’ )
ax . p l o t ( x , y , marker = ’+’ , l a b e l = ’ t r i a l s ’ )
ax . s e t x l a b e l ( r ’ $n$ ’ , f o n t s i z e = 40)
ax . t e x t ( . 5 , . 95 , r ’ $y (n) $ ’ , f o n t s i z e = 40 , t rans form = ax .

transAxes , ha = ’ c en t e r ’ , va = ’ c en t e r ’ )
ax . t e x t ( . 5 , . 9 , ’ ( e x p e c t a t i o n o f t he maximum of $n$

independent s tandard Gaussians ) ’ , f o n t s i z e = 20 ,
t rans form = ax . transAxes , ha = ’ c en t e r ’ , va = ’ c en t e r ’ )

ax . t i c k params ( l a b e l s i z e = 30)
h , l = ax . g e t l e g e n d h a n d l e s l a b e l s ( )
ax . l e g end (h , [ ’ e s t ima t e ’ ] + [ f ” t r i a l {1 + k}” f o r k in

range ( n t e s t ) ] + [ r ’ $1\%$ band ’ ] , l o c = ’ lower r i g h t ’ ,
f o n t s i z e = 40)

p l t . s a v e f i g ( ’ max n gau s s i an s va l u e s . pd f ’ )
p l t . show ( )

f i g , ax = p l t . s u b p l o t s ( f i g s i z e = (20 , 10) )
ax . s e t y s c a l e ( ’ l o g ’ )
ax . p l o t ( x , np . abs ( y . s t d ( a x i s = 1) / y .mean( a x i s = 1) ) , ’ o ’ ,

l a b e l = ’ e s t ima t e ’ )
ax . f i l l b e t w e e n ( x , −1, . 01 , a lpha = .3 , c o l o r = ’ dodge r b l u e ’ ,
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l a b e l = r ’ $1\% \ band$ ’ )
ax . s e t x l a b e l ( r ’ $n$ ’ , f o n t s i z e = 40)
ax . t e x t ( . 3 3 , . 85 , r ’ $\ f r a c {\ d e l t a y (n) }{y (n) }$ ’ , f o n t s i z e = 60 ,

t rans form = ax . t ransAxes )
ax . t i c k pa rams ( l a b e l s i z e = 30)
ax . l e g end ( f o n t s i z e = 40 , l o c = ’ upper r i g h t ’ )
p l t . s a v e f i g ( ’ max n norma l s p r e c i s i on s . pd f ’ )
### of course , t h e va l u e a t x = 1 i s y = 0 . . .
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Figure 1: Estimates of the expectation of n independent standard Gaussians
for n = 1, . . . , 20, obtained as the average of 5 trials using 50,000 samples
each.
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Figure 2: Relative errors on the estimates of the expectation of n independent
standard Gaussians for n = 1, . . . , 20.
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