
Exercises # 4: Markov Chains

Léo Neufcourt

October 4, 2019

Each problem is worth 10 points, points above 50 are bonus. Due at the
beginning of class on October 4. Python codes must be sent by email before
October 4, 12:40pm.

Exercise 1. Consider a Markov chain with transition matrix

P =
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
a) Represent the graph of this Markov chain and determine its communica-

tion classes, their nature (recurrent or transient) and their periodicity.

b) Determine the stationary probabilities of this Markov chain.

c) Is there a limiting distribution?

d) How much time does the process spend in average in each of the states (at
the limit where the time n→∞)?
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Solution 1.
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a) This is a Markov chain on a finite state space, with five communication
classes: two recurrent classes, R1 := {1, 6, 8}, aperiodic; and R2 := {4, 7, 10},
with period two; and three transient classes, T1 := {9}, T2 = {2} and T3 =
{3, 5} (aperiodic).

b) Let π be a stationary distribution of the Markov chain, if it exists. First
we must have π2 = π3 = π5 = π9 = 0 since these transient states. Then, for
a Markov chain on a recurrent classes R1 or R2, there exists unique station-
ary probabilities, which we respectively denote π(1) and π(2). The stationary
distributions for the Markov process will be all the distributions of the form
π = λπ(1) + (1− λ)π(2), for some 0 ≤ λ ≤ 1.

Now let us find the stationary distributions π(1) and π(2) on respectively R1

and R2. On R1, symmetry yields

π
(1)
1 = π

(1)
6 = π

(1)
8 =

1

3
.
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On R2, solving π(2)PR2 = π(2) with
∑10

i=1 π
(2)
i = 1 yields

π
(2)
4 = π

(2)
10 =

1

2
π
(2)
7 =

1

4
.

We can conclude that the stationary distributions are:

πλ =
(λ

3
, 0, 0,

1− λ
4

, 0,
λ

3
,
1− λ

2
,
λ

3
, 0,

1− λ
4

)
, 0 ≤ λ ≤ 1.

c) In general there is no limiting distributions, since the recurrent class
R2 is periodic; however, if the process starts in the ergodic class R1, it will
converge in distribution to π(1).

d) There is no unique stationary distribution here that we can use it to
determine immediately the average time spent in each of the states. First, the
process will spend a finite time in transient states, hence will have a limiting
probability 0 to be in the transient states. The time spent in recurrent states
depends where the process starts initially: if the process starts in the class
R1, it will always stay in R1 and spend in the long run average proportions
π(1) of its time in the respective states of R1; if the process starts in the class
R2, it will always stay in R2 and spend in the long run average proportions
π(2) of its time in the respective states of R2; now if the process starts in the
transient class, if will enter one of the recurrent classes after a finite number
of steps, and stay there forever: this will be R1 with probability p5,8

p5,8+p5,7
= 2

3

and R2 with probability 1
3
.

Exercise 2. A kangaroo jumps between five points on a circle, At every
step he jumps from its location to one of the two neigboring points on the
circle with probability 0.5. Show that the locations of the kangaroo at each
step compose a Markov chain and provide its state space, graph and transition
matrix; determine the communication classes as well as the period and nature
(recurrent or transient) of all states. How much time does the kangaroo spend
in average in each of the states (at the limit where the time n→∞)?

Solution 2. Clearly at every time the future moves of the kangaroo depend
only in its current locations, hence its locations form a Markov chain on the
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state space S = {1, 2, 3, 4, 5}. The transitions matrix is:

P =


0 1

2
0 0 1
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2
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0


The chain is irreducible; it is also aperiodic because it is possible to go from
state 1 to state 1 in two steps and in five steps with the paths 1→ 2→ 1 and
1→ 2→ 3→ 4→ 5→ 1, so any period d should divide 2 and 5 and there is
no such number d ≥ 2.

Since it has a finite state space the chain is positive recurrent and ergodic,
and it follows from the symmetries of the matrix that the unique stationary
distribution is the uniform distribution π = (1

5
, 1
5
, 1
5
, 1
5
, 1
5
).

Thus the kangaroo will spend in average 1
5

of the time at each locations.
Note that we know additionally that this ergodic Markov chain converges to
its stationary distribution, i.e. the probability that after any long time we
find the kangaroo in each of the locations is 1

5
.

Exercise 3. You commute between home and office and you have four um-
brellas. Every time, if it rains you take your umbrella; if it doesn’t rain you
leave the umbrella behind (at home or in the office). It may happen that all
umbrellas are in one place, you are at the other, it starts raining and you
must leave: in that case, you get wet.

1. Show that the number of umbrellas that are in the same location as you
are at the times when you need to commute is a Markov chain, draw its
graph and give its transition probabilities.

2. What are the stationary distributions?

3. If the probability of rain is p, what is the probability that you get wet?

4. (Bonus) Current estimates show that p = 0.6 in East Lansing. How many
umbrellas should you have so that, following the strategy described above,
the probability that you get wet is less than 10%?
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Solution 3.

S0 S4 S1 S3 S2

1 p q p

pqpq

q

1. Let us consider a Markov chain X taking values in the set S = {0, 1, 2, 3, 4}
and representing the number of umbrellas in the place where you are currently
at (home or office). For instance, if at some time n there are Xn = 1 um-
brella(s) at your location and it rains, then you take the umbrella, commute
to the other location where there are already 3 umbrellas, so that including
the one you are bringing bring you will have next Xn+1 = 4 umbrellas. Thus
p1,4 = p which is the probability of rain. If Xn = 1 but it does not rain then
you do not take the umbrella and you go to the other place where you will
find 3 umbrellas. Thus, p1,3 = 1 − p =: q. Continuing in the same manner
we obtain the transition matrix

P =


0 0 0 0 1
0 0 0 q p
0 0 q p 0
0 q p 0 0
q p 0 0 0


2. The stationary distributions are the row matrices π solutions of πP = π
with

∑
i πi = 1. This leads first to π0 = qπ4. The remaining equations, once

π0 has been replaced by qπ4, are symmetric in π1, π2, π3 and π4, so that
π1 = π2 = π3 = π4 = 1

4+q
and π0 = q

4+q
.

3. You will get wet every time you happen to be in state 0 and it rains. The
long run-probability to be in state 0 is π0, and independently the probability
that it rains is p. Hence P(wet) = π0p = pq

q+4
.

4. With p = 0.6 and q = 0.4, we have P(wet) ≈ 5.45% If you want the
chance to be less than 1% then clearly you need more umbrellas. Suppose
that you have k umbrellas. Seting up the Markov chain as above, it is clear
that the unique stationary distribution is π1 = π2 = ... = πk = 1

q
π0 whence

π0 = q
q+N

and P (wet) = pq
q+N

. In order to have P (wet) ≤ 1% you just need

5



to take
N ≥ 100pq − q = 23.6.

In order to reduce the chance of getting wet from 6% to less than 1% you will
need 24 umbrellas instead of 4. It is certainly cheaper to get wet.

Exercise 4. Let Sn be a simple (symmetric and one-dimensional) random
walk on Z and let Ni := inf{n ≥ 1 : Sn = 0}. What is the expectation of the
number of times that S, starting at 0, will visit a given state i ∈ Z, i > 0,
before it will come back to 0 for the first time?

Hint: The probability that, starting at 0, the process will hit i exactly k times
before coming back to 0 for the first time is the probability that the process
will first, starting at 0, hit i without hitting 0; then, starting at i, return to i
without hitting 0, k− 1 times; and finally, starting at i, hit 0 without hitting
i.

Solution 4. Let us define Tx,y to be the first time a simple random walk
reaches state y, starting in state x. Following the hint we have

P(Ni = k) = P (T0,i < T0,0)P (Ti,i < Ti,0)
k−1P (Ti,0 < Ti,i)

= P (T0,i < T0,0)P (T0,0 < T0,i)
k−1P (T0,i < T0,0)

after using that P (Ti,i < Ti,0) = P (T0,0 < T0,i) and P (Ti,0 < Ti,i) = P (T0,i <
T0,0) thanks to symmetries. Now for i > 0 we have S1 = −1 implies T0,0 <
T0,i, thus P (T0,i < T0,0) = P (T0,i < T0,0, S1 = 1) = 1

2
P (T0,i < T0,0, S1 = 1).

The last term is given by the next problem (symmetric case): we are looking
at whether a gambler starting with $1 will reach a fortune of $i or become
ruined. Hence, P (T0,0 < T0,i) = 1

i
so that

P(T0,0 = k) =
1

2k
.

Finally

E[Ni] =
∞∑
k=1

k
1

(2i)2
(1− 1

2i
)k−1 = 1,

i.e. the process will make in average one visit to i before returning to 0.

Exercise 5. Consider a gambler who starts with an initial fortune of $x and
then places independently successive bets, at each of which he wins or loses
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$1 with probabilities p and q := 1−p, respectively. The gambler stops playing
when (if and only if) his fortune reaches $0 or $y, y > x. Let Sn denote the
total fortune after the nth bet, T := (x, y) := inf{n ≥ 0 : Sn = 0 or Sn = y}
the time when the game stops, and let φ(x) := φ(x, y) := P (ST = y).

1. Show that S is a Markov chain and give its states, transition probabili-
ties, and communication classes as well as classes nature (recurrent or
transient) and periodicity.

2. Find a recursion on φ(x).

3. If p = q = 1
2
, show that φ(x) = x

y
.

4. What is φ(x) when p 6= q?

5. Does the Markov chain S have any stationary distribution? any limiting
distribution?

6. Consider the alternative strategy where the gambler’s bet all his wealth
x at the first bet. Which strategy is best? Does this depend on x, y, or
p?

Solution 5.

1-4. See textbook for this classical problem.

5. To compare the two strategies let us consider the case x = y. When
p = 1

2
(fair game) both strategies have the same expected outcome –

and the same risk; if p > 1
2

the gambler should follow the first strategy
consisting in incremental $1 bets, and earn $x with probability 1 in the
long run; if p < 1

2
the gambler should use the second strategy consisting

in a single $x bets and earn $x with probability p.

Exercise 6. Consider the simple random walk on the signed integers (as
defined in class). Is there any stationary distribution? Is there any limiting
distribution?

Solution 6. If there were a stationary distribution, then the stationary prob-
abilities shall be the same for all states due to the symmetry of the transition
probabilities (both in the symmetric case and non-symmetric case). As there
is an infinite number of states this is simply impossible. Since a limiting
distribution must be a stationary distribution there can be no limiting distri-
bution, either.
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