
Exercises # 5: Applications of Markov Chains

Léo Neufcourt

October 28, 2019

Each problem is worth 10 points, points above 40 are bonus. Due at the beginning of
class on October 18. Python codes must be sent by email before October 18, 12:40pm.

Exercise 1. Exercise 63 page 286 in the textbook.

Solution 1. The chain has two communication classes, T := {1, 2, 3} (transient) and
R := {4} (erdodic, absorbing). First, si,j = [(IT − PT )−1]i,j.

(IT − PT )−1 = 10
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145
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29
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145
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29
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145
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.

For i, j ∈ T and 0 ≤ m, let Ti,j(m) := #{n ≥ m : Xn = j|X0 = i} and fi,j :=
P (Xn = j for some n ≥ 0|X0 = i) = P (Ti,j(0) > 0). It follows from the Markov
property that Ti,j(0) = Ti,j(1) + 1i=j Now we have

si,j := E[Ti,j(0)]

= 1i=j + E[Ti,j(1)]

= 1i=j + P(Ti,j(1) > 0)E[Ti,j(1)|Ti,j(1) > 0] + P(Ti,j(1) = 0)E[Ti,j(1)|Ti,j(1) = 0]

= 1i=j + P(Ti,j(1) > 0)E[Tj,j(1)]

= 1i=j + fi,jsj,j

Thus if i 6= j,

fi,j =
si,j
sj,j

;

and

fj,j =
si,j − 1

sj,j
.

Hence f1,3 = 9
28

, f2,3 = 13
28

, and f3,3 = 27
56

.

Exercise 2. Exercise 64 page 286 in the textbook.
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Solution 2. With µ < 1, we have

E[
∞∑
k=0

Xk|X0 = 1] =
∞∑
k=0

E[Xk|X0 = 1]

=
∞∑
k=0

muk

=
1

1− µ

E[
∞∑
k=0

Xk|X0 = n] = n
∞∑
k=0

E[Xk|X0 = 1]

=
n

1− µ

Exercise 3. Exercise 66 page 286 in the textbook.

Solution 3. π0 := limn→∞ p(Xn = 0) is the smallest root of φ(x) :=
∑∞

k=0 pkx
k − x = 0

in [0, 1], and we know that 1 is always a root.

a) φ(x) = 3
4
x2 − x+ 1

4
= (x− 1)(3

4
x− 1

4
) which has roots 1

3
and 1, whence π0 = 1

3
.

b) φ(x) = 1
4
x2 − 1

2
x+ 1

4
= 1

4
(x− 1)2 which has double root 1, whence π0 = 1.

c) φ(x) = 1
3
x3 − 1

2
x + 1

6
= (x − 1)(1

3
x2 + 1

3
x − 1

6
) = 1

6
(x − 1)(2x2 + 2x − 1), which has

roots 1 and −1±
√
3

2
, whence π0 =

√
3−1
2

.

Exercise 4. Exercise 67 page 286 in the textbook.

Solution 4.

a) X is a Makov chain because the distribution of Xn+1 is fully determined by the com-
position of the urn after time n, i.e. by Xn. The state space is {0, 1, ..., N}.

b) Clearly X is irreducible (each state communicates with its two neighbors) and aperi-
odic (each state has a positive transition probability to itself). An irreducible Markov
chain on a finite state space is always (positive) recurrent.

c) The non-zero transition probabilities are

• pi,i+1 = pN−i
N

, 0 ≤ i ≤ N − 1;

• pi,i−1 = (1− p) i
N

, 1 ≤ i ≤ N ;

• pi,i = p i
N

+ (1− p)N−i
N

, 0 ≤ i ≤ N .
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d) Since states communicate only with their neighbors, solving πP = π amounts to

equating flows π0P0,1 = π1P1,0 and π1P1,2 = π2P2,1, yielding π0/π1 = (1−p)/2
p

and

π2/π1 = p/2
1−p . From π0 +π1 +π2 = 1 we get π0 = p2, π1 = 2p(1−p) and π2 = (1−p)2.

The proportion of time spent in each (recurrent) state is precisely given by π.

e) Let us conjecture that πk = Ck
Np

k(1− p)N−k.

f) We can prove the conjecture without using the results on time reversible Markov
chains. If 1 ≤ i ≤ N , we have∑

i

πipi,j = πj−1pj−1,j + πjpj,j + πj+1pj+1,j

= πj−1p
N − (j − 1)

N
+ πj[p

j

N
+ (1− p)N − j

N
] + πj+1(1− p)

j + 1

N

= [p
N − (j − 1)

N
πj−1 + πj(1− p)

N − j
N

] + [πjp
j

N
+ πj+1(1− p)

j + 1

N
]

= [Cj−1
N−1p

j(1− p)N+1−j + Cj
N−1p

j(1− p)N+1−j]

+[Cj
N−1p

j+1(1− p)N−j + Cj−1
N−1p

j+1(1− p)N−j]
= (1− p)Cj

Np
j(1− p)N−j + pCj

Np
j(1− p)N−j

= πj

Since the chain is positive recurrent and aperiodic (i.e. ergodic) π is also the limiting
distribution.

g) The time T until there are only white balls can be decomposed into T =
∑N−1

k=i Tk,
where Tk is the number of steps needed to go from k to k + 1 white balls in the urn.
Tk is the time of the first success in independent Bernouilli trials, each with success
probability pk = N−k

N
, so E[Tk] = N

N−k and E[T ] = N
∑N−i

k=1
1
k
.

Exercise 5 (Python). First or all, simulate a “data” vector x containing 1,000 inde-
pendent observations of Binomial distribution with n = 2019 and p = 0.5. This vector
x = (x1, x2, ..., x1,000) is now fixed.

Now suppose that we have the following model for the data X: first we know that, given
the value of a random variable N , X1, ..., X1,000 follow independent Binomial distribution
with parameters n = n and p = 0.5, i.e.

p(X = x|N = n) =

1,000∏
k=1

Cxk
n

1

2n
.

Additionally, we also know the general distribution of N : P(N = n) = 6
π2n2 .
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Use the Metropolis Hasting algorithm to generate 10,000 samples (Z1, Z2, ..., Z10,000 ap-
proximately following the conditional distribution p(N |X = x), i.e. such that

p(Zn = j) ≈ p(N = j|X = x)

when n→∞, and plot their histogram. What is (an approximate value of) E[N |X = x]?
Note that the answer will depend on the values you sampled for x.

You can use numpy, scipy and matplotlib as well as all packages from the standard
library.
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