Exercises \# 7: Poisson process: application and generalizations

Léo Neufcourt

October 28, 2019

Each problem is worth 10 points, please do all problems. Due at the beginning of class on Wednesday, November 6. Python codes must be sent by email before Wednesday, November 6, 12:40pm.

Exercise 1. Suppose that the number of customer entering a bank follows a Poisson process with rate parameter 3 (per hour).
(i) What is the expected time before the first customer enters the bank?
(ii) Given that exactly 10 customers have entered the shop within the first hour, what is the expected time at which the first customer entered the bank?
(iii) Given that exactly 5 customers have entered the shop within the first opening hour, what is the probability that the last customer arrived in the last five minutes?

Exercise 2.

1. Let N be a (homogeneous) Poisson process with rate parameter λ. Show that, for every fixed $s \geq 0,\left(N_{t+s}-N_{s}\right)$ is a (homogeneous) Poisson process with rate parameter λ.
2. Let N be a non-homogeneous Poisson process with a (deterministic) intensity function $t \mapsto \lambda(t)$. Under which condition(s) on the function λ does the process N have stationary increments? (In other words, for which rate function λ do N_{t} and $N_{s+t}-N s$ have the same distribution for every $s, t \geq 0$?)

Exercise 3. Please solve Exercise 71 on page 365 of the textbook.

Exercise 4. A casino offers the following game, for a fee of $\$ 1$: at time $t=0$, the player starts with a score 0 , and a Poisson process N with rate parameter 1 (per minute) is started; with $S_{0}:=0$, the jump times S_{i} of N (i.e. the time at which the events canonically associated with N occur) serve as a random clock for the game: at every even jump time S_{i}, the player's score increases by 1 if the time $\tau_{i}:=S_{i}-S_{i-1}$ elapsed since the preceding jump time is larger than 1 s else the score doesn't change). At the end of the game, the player receives his or her score in $\$$ amount.

1. Suppose that the game stops at time $T=1$ minute. Do you want to play this game?
2. Suppose that the game stops at time $T=5$ minutes. Do you want to play this game?
3. Suppose that the game stops at a fixed time T; what would be the fair price for playing this game?
4. Now suppose that the game stops when your score reaches 2 or N reaches 5, whichever comes first. Do you want to play this game?

Exercise 5. 1. Let N be a non-homogeneous Poisson process with intensity function $\lambda(t):=t$.
(i) What is $\mathbb{E}\left[N_{t}\right]$?
(ii) What is \mathbb{V} ar $\left[N_{t}\right]$?
(iii) What is $\lim _{t \rightarrow \infty} \frac{N_{t}}{t}$?
(iv) What is $\lim _{t \rightarrow \infty} \frac{N_{t}}{t^{2}}$?
(v) What is $\lim _{t \rightarrow \infty} \frac{N_{t}}{t^{3}}$?

Hint : recall that we have shown $\frac{\text { Poisson }(\lambda t)}{t} \underset{t \rightarrow \infty}{\longrightarrow} \lambda$ a.s., and thus in probability and in distribution as well, for any non-negative real number λ.
2. Let N be a non-homogeneous Poisson process with intensity function $\lambda(t)=e^{-t}$.
(i) What is $\mathbb{E}\left[N_{t}\right]$?
(ii) What is \mathbb{V} ar $\left[N_{t}\right]$?
(iii) What is $\mathbb{P}\left(N_{t}=1\right)$?
(iv) What is $\lim _{n \rightarrow \infty} \mathbb{P}\left(N_{t}=1\right)$?

