Exercises # 7: Poisson process: application and generalizations

Léo Neufcourt

November 14, 2019

Each problem is worth 10 points, please do all problems. Due at the beginning of class on **Wednesday**, **November 6**. Python codes must be sent by email before Wednesday, November 6, 12:40pm.

Exercise 1. Suppose that the number of customer entering a bank follows a Poisson process N with rate parameter 3 (per hour).

- (i) What is the expected time before the first customer enters the bank?
- (ii) Given that exactly 10 customers have entered the shop within the first hour, what is the expected time at which the first customer entered the bank?
- (iii) Given that exactly 5 customers have entered the shop within the first opening hour, what is the probability that the last customer arrived in the last five minutes?

Solution 1.

- (i) The time before the first customer arrives follows an exponential distribution with parameter $\lambda = 3$ whence mean $\frac{1}{3}$ hour or 20 minutes.
- (ii) Conditionally to $N_1 = 10$, the first event (customer entering the bank) is distributed as the minimum of 10 independent uniform random variables U_i on (0, 1), which has mean

$$\int_0^1 P(U_i > x, i = 1, ..., 10) dx = \int_0^1 P(U_i > x)^{10} dx$$
$$= \int_0^1 (1 - x)^{10} dx$$
$$= \frac{1}{11}$$

hour or approximately 5 minutes and 27 seconds.

(iii) Conditionally to $N_1 = 5$, the last event (customer entering the bank) is distributed as the maximum of 5 independent uniform random variables U_i on (0, 1), whence the probability that is is larger that 5 minutes is

$$P(\max U_i \ge \frac{55}{60}) = P(\max U_i \ge \frac{11}{12})$$

= $1 - P(\max U_i \le \frac{11}{12})$
= $1 - P(U_i \le \frac{11}{12}, i = 1, ..., 5)$
= $1 - P(U_i \le \frac{11}{12})^5$
= $1 - \frac{11}{12}^5$
 ≈ 0.3527

Exercise 2.

- 1. Let N be a (homogeneous) Poisson process with rate parameter λ . Show that, for every fixed $s \geq 0$, $(N_{t+s} N_s)$ is a (homogeneous) Poisson process with rate parameter λ .
- 2. Let N be a non-homogeneous Poisson process with a (deterministic) intensity function $t \mapsto \lambda(t)$. Under which condition(s) on the function λ does the process N have stationary increments? (In other words, for which rate function λ do N_t and $N_{s+t} - N_s$ have the same distribution for every $s, t \ge 0$?)

Solution 2.

- 1. Let $\widetilde{N}_t := N_{s+t} N_s$. Clearly, $\widetilde{N}_0 = 0$ and \widetilde{N} has independent increments; additionally $\widetilde{N}_v \widetilde{N}_u \sim \mathcal{P}(\lambda \times (v u))$ for every $u \leq v$; this characterizes a Poisson process.
- 2. For any $s,t \geq s$, $N_{s+t} N_s \sim \mathcal{P}(\Lambda(s,t))$, where $\Lambda(s,t) := \int_s^{s+t} \lambda(u) du = \int_0^t \lambda(s+u) du$. In particular, the mean of $N_{s+t} N_s$ is given by $\Lambda(s,t)$ Stationary increments means that $\Lambda(s,t)$ in independent of s; since $\Lambda(s,t)$ is differentiable with respect to s, its derivative $\partial_s \Lambda(s,t) = \lambda(s+t) \lambda(s)$ must equal 0 for every $s, t \geq 0$, whence λ must be constant and N must be a "true" Poisson process So, a non-homogeneous Poisson process with stationary increments is a (homogeneous) Poisson process.

Exercise 3. Please solve Exercise 71 on page 365 of the textbook.

Solution 3. Conditionally to $N_t = n, S_1, ..., S_n$ have the same (joint) distribution as the order statistics $U_{(1)}, U_{(2)}, ..., U_{(n)}$ of i.i.d. random variables $U_1, U_2, ..., U_n$ uniformly distributed on (0, t). It follows that for every $x \in \mathbb{R}$

$$\mathbb{P}[\sum_{i=1}^{N_t} g(S_i) > x | N_t = n] = \mathbb{P}[\sum_{i=1}^{N_t} g(U_{(i)}) > x | N_t = n]$$

= $\mathbb{P}[\sum_{i=1}^n g(U_{(i)}) > x]$
= $\mathbb{P}[\sum_{i=1}^n g(U_i) > x]$
= $\mathbb{P}[\sum_{i=1}^n g(U_i) > x]$
= $\mathbb{P}[\sum_{i=1}^{N_t} g(U_i) > x | N_t = n]$

and

$$\mathbb{P}[\sum_{i=1}^{N_t} g(S_i) > x] = \sum_{n \ge 0} \mathbb{P}(N_t = n) \mathbb{P}[\sum_{i=1}^{N_t} g(S_i) > x | N_t = n]$$
$$= \sum_{n \ge 0} \mathbb{P}(N_t = n) \mathbb{P}[\sum_{i=1}^{N_t} g(U_i) > x | N_t = n]$$
$$= \mathbb{P}[\sum_{i=1}^{N_t} g(U_i) > x].$$

In particular,

$$\mathbb{E}[\sum_{i=1}^{N_t} g(S_i)] = \mathbb{E}[\sum_{i=1}^{N_t} g(U_i)] = \mathbb{E}[N_t]\mathbb{E}[g(U_1)] = \lambda t \int_0^t g(x)\frac{dx}{t} = \lambda \int_0^t g(x)dx$$
$$\mathbb{V}ar[\sum_{i=1}^{N_t} g(S_i)] = \mathbb{V}ar[\sum_{i=1}^{N_t} g(U_i)] = \mathbb{E}[N_t]\mathbb{E}[g(U_1)^2] = \lambda t \int_0^t g(x)^2\frac{dx}{t} = \lambda \int_0^t g(x)^2dx$$

Exercise 4. A casino offers the following game, for a fee of \$1: at time t = 0, the player starts with a score 0, and a Poisson process N with rate parameter 1 (per minute) is started; with $S_0 := 0$, the jump times S_i of N (i.e. the time at which the events canonically associated with N occur) serve as a random clock for the game: at every even jump time S_i , the player's score increases by 1 if the time $\tau_i := S_i - S_{i-1}$ elapsed since the preceding jump time is larger than 1s else the score doesn't change. At the end of the game, the player receives his or her score in \$ amount.

- 1. Suppose that the game stops at time T = 1 minute. Do you want to play this game?
- 2. Suppose that the game stops at time T = 5 minutes. Do you want to play this game?
- 3. Suppose that the game stops at a fixed time T; what would be the fair price for playing this game?
- 4. Now suppose that the game stops when your score reaches 2 or N reaches 5, whichever comes first. Do you want to play this game?

Solution 4. Let X'_t denote the score at time t and denote as well X_t the score obtained in the (more advantageous) variant where the score is increased by 1 at both even and odd jumps of N for which the time elapsed since the previous jump is larger than 1s.

1. The score X_1 at time 1 is always lower or equal to N_1 , and $\mathbb{E}[N_1] = 1$; since $P(X_1 < N_1) > P(0 < S_1 < \frac{1}{60} < 1 < S_2) > 0$, $\mathbb{E}[X_1] < \$1$ and

$$\mathbb{E}[X'_1] \le \mathbb{E}[X_1] < \$1$$

(the game is disadvantageous in average).

2. Consider the following five i.i.d. events: N has exactly zero event on $(i, i + \frac{1}{60})$ and exactly one event on $(i + \frac{1}{60}, i + 1)$, i = 0, ..., 4. each of which has a probability $q := e^{-\frac{1}{60}}e^{-\frac{59}{60}}\frac{59}{60} \approx 0.37$. Thus the expected score $\mathbb{E}[X_t]$ is larger than the binomial expectation 5q, i.e.

$$\mathbb{E}[X_t] \ge 5q \approx \$1.87 > \$1.$$

Consider the following five i.i.d. events: N has exactly zero event on $(i, i + \frac{1}{60})$, exactly one event on $(i+\frac{1}{60}, i+\frac{1}{2})$, exactly zero event on $(i+\frac{1}{2}, i+1)$, i = 0, 1, 2, 3, 4, each of which has a probability $q' := e^{-\frac{1}{60}} \times e^{-\frac{29}{60}} \frac{29}{60} \times \frac{1}{2}e^{-\frac{1}{2}} \approx 0.24$. Thus the expected score $\mathbb{E}[X'_T]$ is larger than the binomial expectation 5q, i.e.

$$\mathbb{E}[X_T] \ge \mathbb{E}[X'_T] \ge 5q' \approx \$1.21 > \$1.$$

3. We have seen in (i) and (ii) that the expected score satisfies the bounds:

$$q'T \leq \mathbb{E}[X'_t] \leq \mathbb{E}[X_T] \leq T.$$

To get the exact expectations, suppose first that $N_t = n$; in that case, the times are distributed as the order statistics of i.i.d. uniform random variables U_i on (0,t). Thus conditionally to $N_t = n$, the expected scores are

$$E[X_T|N_t = n] = E[\sum_{i=1}^n 1_{S_i - S_{i-1} > \frac{1}{60}} | N_t = n]$$

= $nE[1_{S_1 > \frac{1}{60}} | N_t = n]$
= $nP[S_1 > \frac{1}{60} | N_t = n]$
= $nP[U_1 > \frac{1}{60}]^n$
= $n(1 - \frac{1}{60t})^n$,

$$E[X_T|N_t = 2n] = E[\sum_{i=1}^n 1_{S_{2i} - S_{2i-1} > \frac{1}{60}} | N_t = 2n]$$

= $nE[1_{S_1 > \frac{1}{60}} | N_t = 2n]$
= $nP[S_1 > \frac{1}{60} | N_t = 2n]$
= $nP[U_1 > \frac{1}{60}]^{2n}$
= $n(1 - \frac{1}{60t})^{2n}$

and

$$E[X_T|N_t = 2n+1] = E[\sum_{i=1}^n 1_{S_{2i}-S_{2i-1}>\frac{1}{60}} | N_t = 2n+1]$$

= $nE[1_{S_1>\frac{1}{60}} | N_t = 2n+1]$
= $nP[S_1 > \frac{1}{60} | N_t = 2n+1]$
= $nP[U_1 > \frac{1}{60}]^{2n+1}$
= $n(1 - \frac{1}{60t})^{2n+1}$

Finally the expected scores are

$$E[X_T] = \sum_{n=1}^{\infty} P(N_t = n) E[X_T | N_t = n] = \sum_{n=1}^{\infty} e^{-t} \frac{t^n}{n!} n(1 - \frac{1}{60t})^n = (t - \frac{1}{60}) e^{-\frac{1}{60t}}$$

and

$$\begin{split} E[X'_T] &= \sum_{n=1}^{\infty} P(N_t = n) E[X'_T | N_t = n] \\ &= \sum_{n=1}^{\infty} P(N_t = 2n) E[X'_T | N_t = 2n] + \sum_{n=1}^{\infty} P(N_t = 2n+1) E[X'_T | N_t = 2n+1] \\ &= \sum_{n=1}^{\infty} e^{-t} \frac{t^{2n}}{2n!} n(1 - \frac{1}{60t})^{2n} + \sum_{n=1}^{\infty} e^{-t} \frac{t^{2n+1}}{(2n+1)!}) n(1 - \frac{1}{60t})^{2n+1} \\ &= \frac{1}{2} (t - \frac{1}{60}) e^{-t} sh(t - \frac{1}{60}) + \frac{1}{2} e^{-t} [(t - \frac{1}{60})(ch(t - \frac{1}{60}) - 1) - sh(t - \frac{1}{60})] \\ &= \frac{1}{2} e^{-t} [(t - \frac{1}{60})(ch(t - \frac{1}{60}) + sh(t - \frac{1}{60}) - 1) - sh(t - \frac{1}{60})] \\ &= \frac{1}{2} e^{-t} [(t - \frac{1}{60})(e^{t - \frac{1}{60}} - 1) - sh(t - \frac{1}{60})] \end{split}$$

For T = 1, this gives:

$$E[X_T] = \frac{59}{60}e^{-\frac{1}{60}} \approx \$0.97$$
$$E[X_T'] = \frac{e^{-1}}{2}\frac{59}{60}[(e^{\frac{59}{60}} - 1) - sh(\frac{59}{60}) \approx \$0.09.$$

With T = 5, this gives

$$E[X_T] = \frac{299}{60}e^{-\frac{1}{60}} \approx \$4.9$$
$$E[X_T] = \frac{e^{-5}}{2}(\frac{299}{60})[(e^{\frac{299}{60}} - 1) - sh(\frac{299}{60}) \approx \$2.18$$

4. First consider the variant where the score is not bounded by 2, i.e. the score is simply the score at time 5, and denote \widetilde{X}_t the score at time t for t = 1, ..., 5. The interarrival times $\tau_i := S_i - S_{i-1}, i = 1, ..., 5$, are i.i.d. exponential random variables, each of which is larger than $\frac{1}{60}$ with probability $e^{-\frac{1}{60}}$. Thus \widetilde{X}_5 is simply the number of success in independent trials, each of which has success probability $e^{-\frac{1}{60}}: \widetilde{X}_5$ follows a binomial distribution $\mathcal{B}(n = 5, p = e^{-\frac{1}{60}})$. In particular,

$$\pi_0 := P(\widetilde{X}_5 = 0) = (1 - e^{-\frac{1}{60}})^5 \approx 1.2310^{-9}$$
$$\pi_1 := P(\widetilde{X}_5 = 1) = 5(e^{-\frac{1}{60}})(1 - e^{-\frac{1}{60}})^4 \approx 3.6710^{-7}$$

Second, the actual score X_T is given by $X_T := \min(\widetilde{X}_5, 2)$, so that $X_T = 0$ with probability π_0 , $X_T = 1$ with probability π_1 , and $X_T = 2$ with probability $1 - \pi_0 - \pi_1$; in particular

$$\mathbb{E}[X_T] = \pi_1 + 2(1 - \pi_0 - \pi_1) = 2 - 2\pi_0 - \pi_1 \approx \$2 > \$1$$

Finally, it is easy to see that $X'_T \leq \frac{X_t}{2}$, which implies

$$\mathbb{E}[X_T'] \le \frac{\mathbb{E}[X_T]}{2} = \frac{2 - 2\pi_0 - \pi_1}{2} < \$1$$

Exercise 5.

- 1. Let N be a non-homogeneous Poisson process with intensity function $\lambda(t) := t$.
 - (i) What is $\mathbb{E}[N_t]$?
 - (ii) What is $\mathbb{V}ar[N_t]$?
 - (iii) What is $\lim_{t\to\infty} \frac{N_t}{t}$?
 - (iv) What is $\lim_{t\to\infty} \frac{N_t}{t^2}$?
 - (v) What is $\lim_{t\to\infty} \frac{N_t}{t^3}$?

Hint : recall that we have shown $\frac{Poisson(\lambda t)}{t} \xrightarrow[t \to \infty]{t \to \infty} \lambda$ a.s., and thus in probability and in distribution as well, for any non-negative real number λ .

- 2. Let N be a non-homogeneous Poisson process with intensity function $\lambda(t) = e^{-t}$.
 - (i) What is $\mathbb{E}[N_t]$?
 - (ii) What is $\mathbb{V}ar[N_t]$?
 - (iii) What is $\mathbb{P}(N_t = 1)$?
 - (iv) What is $\lim_{t\to\infty} \mathbb{P}(N_t = 1)$?

Solution 5.

- 1. Let N be a non-homogeneous Poisson process with intensity function $\lambda(t) := t$.
 - (i) $\mathbb{E}[N_t] = \int_0^t s ds = \frac{t^2}{2}$. Thus N_t is a Poisson random variable with parameter $\frac{t^2}{2}$, and

(ii)
$$\operatorname{Var}[N_t] = \mathbb{E}[N_t] = \frac{t^2}{2}$$
?

1

3-5 We showed that a "true" Poisson process \widetilde{N}_t satisfies $\frac{\widetilde{N}_t}{t} \xrightarrow[t \to \infty]{a.s.} \lambda$. Thus, if $\widetilde{N}_t \sim \mathcal{P}(\lambda t)$, then

$$\frac{\widetilde{N}_t}{\lambda t} \xrightarrow[t \to \infty]{d,P} 1.$$

Since $N_t \sim \mathcal{P}(\frac{t^2}{2})$, we have here $\frac{N_t}{\frac{t^2}{2}} \xrightarrow{d,P}{t \to \infty} 1$, from which follow in probability

$$\lim_{t \to \infty} \frac{N_t}{t} = \infty, \quad \lim_{t \to \infty} \frac{N_t}{t^2} = \frac{1}{2}, \quad \lim_{t \to \infty} \frac{N_t}{t^3} = 0.$$

2. Let N be a non-homogeneous Poisson process with intensity function $\lambda(t) = e^{-t}$.

(i)
$$\mathbb{E}[N_t] = \int_0^t e^{-s} ds = 1 - e^{-t}.$$

Thus N_t is a Poisson random variable with parameter $1 - e^{-t}$, and ...

- (*ii*) ... $\mathbb{V}ar[N_t] = \mathbb{E}[N_t] = 1 e^{-t}$.
- (*iii*) ... $\mathbb{P}(N_t = 1) = (1 e^{-t})e^{-(1 e^{-t})}$
- (iv) $\lim_{t\to\infty} \mathbb{P}(N_t = 1) = e^{-1}$.

In fact, $\lim_{t\to\infty} \mathbb{P}(N_t = n) = \frac{e^{-n}}{n!}$, which means that N converges (in distribution) to a Poisson distribution with parameter 1.