
Exercises # 7: Poisson process: application and
generalizations

Léo Neufcourt

November 14, 2019

Each problem is worth 10 points, please do all problems. Due at the beginning
of class on Wednesday, November 6. Python codes must be sent by email before
Wednesday, November 6, 12:40pm.

Exercise 1. Suppose that the number of customer entering a bank follows a Poisson
process N with rate parameter 3 (per hour).

(i) What is the expected time before the first customer enters the bank?

(ii) Given that exactly 10 customers have entered the shop within the first hour, what
is the expected time at which the first customer entered the bank?

(iii) Given that exactly 5 customers have entered the shop within the first opening hour,
what is the probability that the last customer arrived in the last five minutes?

Solution 1.

(i) The time before the first customer arrives follows an exponential distribution with
parameter λ = 3 whence mean 1

3
hour or 20 minutes.

(ii) Conditionally to N1 = 10, the first event (customer entering the bank) is dis-
tributed as the minimum of 10 independent uniform random variables Ui on (0, 1),
which has mean∫ 1

0

P (Ui > x, i = 1, ..., 10)dx =

∫ 1

0

P (Ui > x)10dx

=

∫ 1

0

(1− x)10dx

=
1

11

hour or approximately 5 minutes and 27 seconds.
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(iii) Conditionally to N1 = 5, the last event (customer entering the bank) is distributed
as the maximum of 5 independent uniform random variables Ui on (0, 1), whence
the probability that is is larger that 5 minutes is

P (maxUi ≥
55

60
) = P (maxUi ≥

11

12
)

= 1− P (maxUi ≤
11

12
)

= 1− P (Ui ≤
11

12
, i = 1, ..., 5)

= 1− P (Ui ≤
11

12
)5

= 1− 11

12

5

≈ 0.3527

Exercise 2.

1. Let N be a (homogeneous) Poisson process with rate parameter λ. Show that,
for every fixed s ≥ 0, (Nt+s −Ns) is a (homogeneous) Poisson process with rate
parameter λ.

2. Let N be a non-homogeneous Poisson process with a (deterministic) intensity
function t 7→ λ(t). Under which condition(s) on the function λ does the process
N have stationary increments? (In other words, for which rate function λ do Nt

and Ns+t −Ns have the same distribution for every s, t ≥ 0?)

Solution 2.

1. Let Ñt := Ns+t − Ns. Clearly, Ñ0 = 0 and Ñ has independent increments;
additionally Ñv − Ñu ∼ P(λ × (v − u) for every u ≤ v; this characterizes a
Poisson process.

2. For any s, t ≥ s, Ns+t − Ns ∼ P(Λ(s, t)), where Λ(s, t) :=
∫ s+t
s

λ(u)du =∫ t
0
λ(s+u)du. In particular, the mean of Ns+t−Ns is given by Λ(s, t) Stationary

increments means that Λ(s, t) in independent of s; since Λ(s, t) is differentiable
with respect to s, its derivative ∂sΛ(s, t) = λ(s+ t)− λ(s) must equal 0 for every
s, t ≥ 0, whence λ must be constant and N must be a “true” Poisson process So, a
non-homogeneous Poisson process with stationary increments is a (homogeneous)
Poisson process.
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Exercise 3. Please solve Exercise 71 on page 365 of the textbook.

Solution 3. Conditionally to Nt = n, S1, ..., Sn have the same (joint) distribution as
the order statistics U(1), U(2), ..., U(n) of i.i.d. random variables U1, U2, ..., Un uniformly
distributed on (0, t). It follows that for every x ∈ R

P[
Nt∑
i=1

g(Si) > x|Nt = n] = P[
Nt∑
i=1

g(U(i)) > x|Nt = n]

= P[
n∑
i=1

g(U(i)) > x]

= P[
n∑
i=1

g(Ui) > x]

= P[
n∑
i=1

g(Ui) > x]

= P[
Nt∑
i=1

g(Ui) > x|Nt = n]

and

P[
Nt∑
i=1

g(Si) > x] =
∑
n≥0

P(Nt = n)P[
Nt∑
i=1

g(Si) > x|Nt = n]

=
∑
n≥0

P(Nt = n)P[
Nt∑
i=1

g(Ui) > x|Nt = n]

= P[
Nt∑
i=1

g(Ui) > x].

In particular,

E[
Nt∑
i=1

g(Si)] = E[
Nt∑
i=1

g(Ui)] = E[Nt]E[g(U1)] = λt

∫ t

0

g(x)
dx

t
= λ

∫ t

0

g(x)dx

Var[
Nt∑
i=1

g(Si)] = Var[
Nt∑
i=1

g(Ui)] = E[Nt]E[g(U1)
2] = λt

∫ t

0

g(x)2
dx

t
= λ

∫ t

0

g(x)2dx
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Exercise 4. A casino offers the following game, for a fee of $1: at time t = 0,
the player starts with a score 0, and a Poisson process N with rate parameter 1 (per
minute) is started; with S0 := 0, the jump times Si of N (i.e. the time at which the
events canonically associated with N occur) serve as a random clock for the game: at
every even jump time Si, the player’s score increases by 1 if the time τi := Si − Si−1
elapsed since the preceding jump time is larger than 1s else the score doesn’t change.
At the end of the game, the player receives his or her score in $ amount.

1. Suppose that the game stops at time T = 1 minute. Do you want to play this
game?

2. Suppose that the game stops at time T = 5 minutes. Do you want to play this
game?

3. Suppose that the game stops at a fixed time T ; what would be the fair price for
playing this game?

4. Now suppose that the game stops when your score reaches 2 or N reaches 5,
whichever comes first. Do you want to play this game?

Solution 4. Let X ′t denote the score at time t and denote as well Xt the score obtained
in the (more advantageous) variant where the score is increased by 1 at both even and
odd jumps of N for which the time elapsed since the previous jump is larger than 1s.

1. The score X1 at time 1 is always lower or equal to N1, and E[N1] = 1; since
P (X1 < N1) > P (0 < S1 <

1
60
< 1 < S2) > 0, E[X1] < $1 and

E[X ′1] ≤ E[X1] < $1

(the game is disadvantageous in average).

2. Consider the following five i.i.d. events: N has exactly zero event on (i, i + 1
60

)
and exactly one event on (i+ 1

60
, i+1), i = 0, ..., 4. each of which has a probability

q := e−
1
60 e−

59
60

59
60
≈ 0.37. Thus the expected score E[Xt] is larger than the binomial

expectation 5q, i.e.
E[Xt] ≥ 5q ≈ $1.87 > $1.

Consider the following five i.i.d. events: N has exactly zero event on (i, i + 1
60

),
exactly one event on (i+ 1

60
, i+ 1

2
), exactly zero event on (i+ 1

2
, i+1), i = 0, 1, 2, 3, 4,

each of which has a probability q′ := e−
1
60 × e−

29
60

29
60
× 1

2
e−

1
2 ≈ 0.24. Thus the

expected score E[X ′T ] is larger than the binomial expectation 5q, i.e.

E[XT ] ≥ E[X ′T ] ≥ 5q′ ≈ $1.21 > $1.
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3. We have seen in (i) and (ii) that the expected score satisfies the bounds:

q′T ≤ E[X ′t] ≤ E[XT ] ≤ T.

To get the exact expectations, suppose first that Nt = n; in that case, the times
are distributed as the order statistics of i.i.d. uniform random variables Ui on
(0, t). Thus conditionally to Nt = n, the expected scores are

E[XT |Nt = n] = E[
n∑
i=1

1Si−Si−1>
1
60
|Nt = n]

= nE[1S1>
1
60
|Nt = n]

= nP [S1 >
1

60
|Nt = n]

= nP [U1 >
1

60
]n

= n(1− 1

60t
)n,

E[XT |Nt = 2n] = E[
n∑
i=1

1S2i−S2i−1>
1
60
|Nt = 2n]

= nE[1S1>
1
60
|Nt = 2n]

= nP [S1 >
1

60
|Nt = 2n]

= nP [U1 >
1

60
]2n

= n(1− 1

60t
)2n

and

E[XT |Nt = 2n+ 1] = E[
n∑
i=1

1S2i−S2i−1>
1
60
|Nt = 2n+ 1]

= nE[1S1>
1
60
|Nt = 2n+ 1]

= nP [S1 >
1

60
|Nt = 2n+ 1]

= nP [U1 >
1

60
]2n+1

= n(1− 1

60t
)2n+1

Finally the expected scores are

E[XT ] =
∞∑
n=1

P (Nt = n)E[XT |Nt = n] =
∞∑
n=1

e−t
tn

n!
n(1− 1

60t
)n = (t− 1

60
)e−

1
60
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and

E[X ′T ] =
∞∑
n=1

P (Nt = n)E[X ′T |Nt = n]

=
∞∑
n=1

P (Nt = 2n)E[X ′T |Nt = 2n] +
∞∑
n=1

P (Nt = 2n+ 1)E[X ′T |Nt = 2n+ 1]

=
∞∑
n=1

e−t
t2n

2n!
n(1− 1

60t
)2n +

∞∑
n=1

e−t
t2n+1

(2n+ 1)!
)n(1− 1

60t
)2n+1

=
1

2
(t− 1

60
)e−tsh(t− 1

60
) +

1

2
e−t[(t− 1

60
)(ch(t− 1

60
)− 1)− sh(t− 1

60
)]

=
1

2
e−t[(t− 1

60
)(ch(t− 1

60
) + sh(t− 1

60
)− 1)− sh(t− 1

60
)]

=
1

2
e−t[(t− 1

60
)(et−

1
60 − 1)− sh(t− 1

60
)]

For T = 1, this gives:

E[XT ] =
59

60
e−

1
60 ≈ $0.97

E[X ′T ] =
e−1

2

59

60
[(e

59
60 − 1)− sh(

59

60
) ≈ $0.09.

With T = 5, this gives

E[XT ] =
299

60
e−

1
60 ≈ $4.9

E[X ′T ] =
e−5

2
(
299

60
)[(e

299
60 − 1)− sh(

299

60
) ≈ $2.18.

4. First consider the variant where the score is not bounded by 2, i.e. the score is
simply the score at time 5, and denote X̃t the score at time t for t = 1, ..., 5.
The interarrival times τi := Si − Si−1, i = 1, ..., 5, are i.i.d. exponential random
variables, each of which is larger than 1

60
with probability e−

1
60 . Thus X̃5 is simply

the number of success in independent trials, each of which has success probability
e−

1
60 : X̃5 follows a binomial distribution B(n = 5, p = e−

1
60 ). In particular,

π0 := P (X̃5 = 0) = (1− e−
1
60 )5 ≈ 1.2310−9

π1 := P (X̃5 = 1) = 5(e−
1
60 )(1− e−

1
60 )4 ≈ 3.6710−7.

Second, the actual score XT is given by XT := min(X̃5, 2), so that XT = 0 with
probability π0, XT = 1 with probability π1, and XT = 2 with probability 1−π0−π1;
in particular

E[XT ] = π1 + 2(1− π0 − π1) = 2− 2π0 − π1 ≈ $2 > $1
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Finally, it is easy to see that X ′T ≤ Xt

2
, which implies

E[X ′T ] ≤ E[XT ]

2
=

2− 2π0 − π1
2

< $1

Exercise 5.

1. Let N be a non-homogeneous Poisson process with intensity function λ(t) := t.

(i) What is E[Nt]?

(ii) What is Var[Nt]?

(iii) What is limt→∞
Nt

t
?

(iv) What is limt→∞
Nt

t2
?

(v) What is limt→∞
Nt

t3
?

Hint : recall that we have shown Poisson(λt)
t

−−−→
t→∞

λ a.s., and thus in probability

and in distribution as well, for any non-negative real number λ.

2. Let N be a non-homogeneous Poisson process with intensity function λ(t) = e−t.

(i) What is E[Nt]?

(ii) What is Var[Nt]?

(iii) What is P(Nt = 1)?

(iv) What is limt→∞ P(Nt = 1)?

Solution 5.

1. Let N be a non-homogeneous Poisson process with intensity function λ(t) := t.

(i) E[Nt] =
∫ t
0
sds = t2

2
. Thus Nt is a Poisson random variable with parameter

t2

2
, and

(ii) Var[Nt] = E[Nt] = t2

2
?

3-5 We showed that a “true” Poisson process Ñt satisfies Ñt

t

a.s.−−−→
t→∞

λ. Thus, if

Ñt ∼ P(λt), then

Ñt

λt

d,P−−−→
t→∞

1.

Since Nt ∼ P( t
2

2
), we have here Nt

t2

2

d,P−−−→
t→∞

1, from which follow in probability

lim
t→∞

Nt

t
=∞, lim

t→∞

Nt

t2
=

1

2
, lim
t→∞

Nt

t3
= 0.
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2. Let N be a non-homogeneous Poisson process with intensity function λ(t) = e−t.

(i) E[Nt] =
∫ t
0
e−sds = 1− e−t.

Thus Nt is a Poisson random variable with parameter 1− e−t, and ...

(ii) ... Var[Nt] = E[Nt] = 1− e−t.
(iii) ... P(Nt = 1) = (1− e−t)e−(1−e−t)

(iv) limt→∞ P(Nt = 1) = e−1.

In fact, limt→∞ P(Nt = n) = e−n

n!
, which means that N converges (in distribution)

to a Poisson distribution with parameter 1.
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