# Exercises \# 7: Poisson process: application and generalizations 

Léo Neufcourt

November 14, 2019

Each problem is worth 10 points, please do all problems. Due at the beginning of class on Wednesday, November 6. Python codes must be sent by email before Wednesday, November 6, 12:40pm.

Exercise 1. Suppose that the number of customer entering a bank follows a Poisson process $N$ with rate parameter 3 (per hour).
(i) What is the expected time before the first customer enters the bank?
(ii) Given that exactly 10 customers have entered the shop within the first hour, what is the expected time at which the first customer entered the bank?
(iii) Given that exactly 5 customers have entered the shop within the first opening hour, what is the probability that the last customer arrived in the last five minutes?

## Solution 1.

(i) The time before the first customer arrives follows an exponential distribution with parameter $\lambda=3$ whence mean $\frac{1}{3}$ hour or 20 minutes.
(ii) Conditionally to $N_{1}=10$, the first event (customer entering the bank) is distributed as the minimum of 10 independent uniform random variables $U_{i}$ on $(0,1)$, which has mean

$$
\begin{aligned}
\int_{0}^{1} P\left(U_{i}>x, i=1, \ldots, 10\right) d x & =\int_{0}^{1} P\left(U_{i}>x\right)^{10} d x \\
& =\int_{0}^{1}(1-x)^{10} d x \\
& =\frac{1}{11}
\end{aligned}
$$

hour or approximately 5 minutes and 27 seconds.
(iii) Conditionally to $N_{1}=5$, the last event (customer entering the bank) is distributed as the maximum of 5 independent uniform random variables $U_{i}$ on $(0,1)$, whence the probability that is is larger that 5 minutes is

$$
\begin{aligned}
P\left(\max U_{i} \geq \frac{55}{60}\right) & =P\left(\max U_{i} \geq \frac{11}{12}\right) \\
& =1-P\left(\max U_{i} \leq \frac{11}{12}\right) \\
& =1-P\left(U_{i} \leq \frac{11}{12}, i=1, \ldots, 5\right) \\
& =1-P\left(U_{i} \leq \frac{11}{12}\right)^{5} \\
& =1-\frac{11^{5}}{12} \\
& \approx 0.3527
\end{aligned}
$$

## Exercise 2.

1. Let $N$ be a (homogeneous) Poisson process with rate parameter $\lambda$. Show that, for every fixed $s \geq 0,\left(N_{t+s}-N_{s}\right)$ is a (homogeneous) Poisson process with rate parameter $\lambda$.
2. Let $N$ be a non-homogeneous Poisson process with a (deterministic) intensity function $t \mapsto \lambda(t)$. Under which condition(s) on the function $\lambda$ does the process $N$ have stationary increments? (In other words, for which rate function $\lambda$ do $N_{t}$ and $N_{s+t}-N_{s}$ have the same distribution for every $s, t \geq 0$ ?)

## Solution 2.

1. Let $\widetilde{N}_{t}:=N_{s+t}-N_{s}$. Clearly, $\widetilde{N}_{0}=0$ and $\widetilde{N}$ has independent increments; additionally $\widetilde{N}_{v}-\widetilde{N}_{u} \sim \mathcal{P}(\lambda \times(v-u)$ for every $u \leq v$; this characterizes a Poisson process.
2. For any $s, t \geq s, N_{s+t}-N_{s} \sim \mathcal{P}(\Lambda(s, t))$, where $\Lambda(s, t):=\int_{s}^{s+t} \lambda(u) d u=$ $\int_{0}^{t} \lambda(s+u) d u$. In particular, the mean of $N_{s+t}-N_{s}$ is given by $\Lambda(s, t)$ Stationary increments means that $\Lambda(s, t)$ in independent of $s$; since $\Lambda(s, t)$ is differentiable with respect to $s$, its derivative $\partial_{s} \Lambda(s, t)=\lambda(s+t)-\lambda(s)$ must equal 0 for every $s, t \geq 0$, whence $\lambda$ must be constant and $N$ must be a "true" Poisson process So, a non-homogeneous Poisson process with stationary increments is a (homogeneous) Poisson process.

Exercise 3. Please solve Exercise 71 on page 365 of the textbook.
Solution 3. Conditionally to $N_{t}=n, S_{1}, \ldots, S_{n}$ have the same (joint) distribution as the order statistics $U_{(1)}, U_{(2)}, \ldots, U_{(n)}$ of i.i.d. random variables $U_{1}, U_{2}, \ldots, U_{n}$ uniformly distributed on $(0, t)$. It follows that for every $x \in \mathbb{R}$

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i=1}^{N_{t}} g\left(S_{i}\right)>x \mid N_{t}=n\right] & =\mathbb{P}\left[\sum_{i=1}^{N_{t}} g\left(U_{(i)}\right)>x \mid N_{t}=n\right] \\
& =\mathbb{P}\left[\sum_{i=1}^{n} g\left(U_{(i)}\right)>x\right] \\
& =\mathbb{P}\left[\sum_{i=1}^{n} g\left(U_{i}\right)>x\right] \\
& =\mathbb{P}\left[\sum_{i=1}^{n} g\left(U_{i}\right)>x\right] \\
& =\mathbb{P}\left[\sum_{i=1}^{N_{t}} g\left(U_{i}\right)>x \mid N_{t}=n\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i=1}^{N_{t}} g\left(S_{i}\right)>x\right] & =\sum_{n \geq 0} \mathbb{P}\left(N_{t}=n\right) \mathbb{P}\left[\sum_{i=1}^{N_{t}} g\left(S_{i}\right)>x \mid N_{t}=n\right] \\
& =\sum_{n \geq 0} \mathbb{P}\left(N_{t}=n\right) \mathbb{P}\left[\sum_{i=1}^{N_{t}} g\left(U_{i}\right)>x \mid N_{t}=n\right] \\
& =\mathbb{P}\left[\sum_{i=1}^{N_{t}} g\left(U_{i}\right)>x\right]
\end{aligned}
$$

In particular,

$$
\begin{gathered}
\mathbb{E}\left[\sum_{i=1}^{N_{t}} g\left(S_{i}\right)\right]=\mathbb{E}\left[\sum_{i=1}^{N_{t}} g\left(U_{i}\right)\right]=\mathbb{E}\left[N_{t}\right] \mathbb{E}\left[g\left(U_{1}\right)\right]=\lambda t \int_{0}^{t} g(x) \frac{d x}{t}=\lambda \int_{0}^{t} g(x) d x \\
\mathbb{V} \operatorname{ar}\left[\sum_{i=1}^{N_{t}} g\left(S_{i}\right)\right]=\mathbb{V} \operatorname{ar}\left[\sum_{i=1}^{N_{t}} g\left(U_{i}\right)\right]=\mathbb{E}\left[N_{t}\right] \mathbb{E}\left[g\left(U_{1}\right)^{2}\right]=\lambda t \int_{0}^{t} g(x)^{2} \frac{d x}{t}=\lambda \int_{0}^{t} g(x)^{2} d x
\end{gathered}
$$

Exercise 4. A casino offers the following game, for a fee of \$1: at time $t=0$, the player starts with a score 0 , and a Poisson process $N$ with rate parameter 1 (per minute) is started; with $S_{0}:=0$, the jump times $S_{i}$ of $N$ (i.e. the time at which the events canonically associated with $N$ occur) serve as a random clock for the game: at every even jump time $S_{i}$, the player's score increases by 1 if the time $\tau_{i}:=S_{i}-S_{i-1}$ elapsed since the preceding jump time is larger than $1 s$ else the score doesn't change. At the end of the game, the player receives his or her score in $\$$ amount.

1. Suppose that the game stops at time $T=1$ minute. Do you want to play this game?
2. Suppose that the game stops at time $T=5$ minutes. Do you want to play this game?
3. Suppose that the game stops at a fixed time $T$; what would be the fair price for playing this game?
4. Now suppose that the game stops when your score reaches 2 or $N$ reaches 5, whichever comes first. Do you want to play this game?

Solution 4. Let $X^{\prime}{ }_{t}$ denote the score at time $t$ and denote as well $X_{t}$ the score obtained in the (more advantageous) variant where the score is increased by 1 at both even and odd jumps of $N$ for which the time elapsed since the previous jump is larger than $1 s$.

1. The score $X_{1}$ at time 1 is always lower or equal to $N_{1}$, and $\mathbb{E}\left[N_{1}\right]=1$; since $P\left(X_{1}<N_{1}\right)>P\left(0<S_{1}<\frac{1}{60}<1<S_{2}\right)>0, \mathbb{E}\left[X_{1}\right]<\$ 1$ and

$$
\mathbb{E}\left[X^{\prime}{ }_{1}\right] \leq \mathbb{E}\left[X_{1}\right]<\$ 1
$$

(the game is disadvantageous in average).
2. Consider the following five i.i.d. events: $N$ has exactly zero event on $\left(i, i+\frac{1}{60}\right)$ and exactly one event on $\left(i+\frac{1}{60}, i+1\right), i=0, \ldots, 4$. each of which has a probability $q:=e^{-\frac{1}{60}} e^{-\frac{59}{60} \frac{59}{60}} \approx 0.37$. Thus the expected score $\mathbb{E}\left[X_{t}\right]$ is larger than the binomial expectation $5 q$, i.e.

$$
\mathbb{E}\left[X_{t}\right] \geq 5 q \approx \$ 1.87>\$ 1
$$

Consider the following five i.i.d. events: $N$ has exactly zero event on $\left(i, i+\frac{1}{60}\right)$, exactly one event on $\left(i+\frac{1}{60}, i+\frac{1}{2}\right)$, exactly zero event on $\left(i+\frac{1}{2}, i+1\right), i=0,1,2,3,4$,
 expected score $\mathbb{E}\left[X^{\prime}{ }_{T}\right]$ is larger than the binomial expectation $5 q$, i.e.

$$
\mathbb{E}\left[X_{T}\right] \geq \mathbb{E}\left[X_{T}^{\prime}\right] \geq 5 q^{\prime} \approx \$ 1.21>\$ 1
$$

3. We have seen in (i) and (ii) that the expected score satisfies the bounds:

$$
q^{\prime} T \leq \mathbb{E}\left[X_{t}^{\prime}\right] \leq \mathbb{E}\left[X_{T}\right] \leq T
$$

To get the exact expectations, suppose first that $N_{t}=n$; in that case, the times are distributed as the order statistics of i.i.d. uniform random variables $U_{i}$ on $(0, t)$. Thus conditionally to $N_{t}=n$, the expected scores are

$$
\begin{aligned}
E\left[X_{T} \mid N_{t}=n\right] & =E\left[\left.\sum_{i=1}^{n} 1_{S_{i}-S_{i-1}>\frac{1}{60}} \right\rvert\, N_{t}=n\right] \\
& =n E\left[\left.1_{S_{1}>\frac{1}{60}} \right\rvert\, N_{t}=n\right] \\
& =n P\left[\left.S_{1}>\frac{1}{60} \right\rvert\, N_{t}=n\right] \\
& =n P\left[U_{1}>\frac{1}{60}\right]^{n} \\
& =n\left(1-\frac{1}{60 t}\right)^{n} \\
E\left[X_{T} \mid N_{t}=2 n\right] & =E\left[\left.\sum_{i=1}^{n} 1_{S_{2 i}-S_{2 i-1}>\frac{1}{60}} \right\rvert\, N_{t}=2 n\right] \\
& =n E\left[\left.1_{S_{1}>\frac{1}{60}} \right\rvert\, N_{t}=2 n\right] \\
& =n P\left[\left.S_{1}>\frac{1}{60} \right\rvert\, N_{t}=2 n\right] \\
& =n P\left[U_{1}>\frac{1}{60}\right]^{2 n} \\
& =n\left(1-\frac{1}{60 t}\right)^{2 n}
\end{aligned}
$$

and

$$
\begin{aligned}
E\left[X_{T} \mid N_{t}=2 n+1\right] & =E\left[\left.\sum_{i=1}^{n} 1_{S_{2 i}-S_{2 i-1}>\frac{1}{60}} \right\rvert\, N_{t}=2 n+1\right] \\
& =n E\left[\left.1_{S_{1}>\frac{1}{60}} \right\rvert\, N_{t}=2 n+1\right] \\
& =n P\left[\left.S_{1}>\frac{1}{60} \right\rvert\, N_{t}=2 n+1\right] \\
& =n P\left[U_{1}>\frac{1}{60}\right]^{2 n+1} \\
& =n\left(1-\frac{1}{60 t}\right)^{2 n+1}
\end{aligned}
$$

Finally the expected scores are

$$
E\left[X_{T}\right]=\sum_{n=1}^{\infty} P\left(N_{t}=n\right) E\left[X_{T} \mid N_{t}=n\right]=\sum_{n=1}^{\infty} e^{-t} \frac{t^{n}}{n!} n\left(1-\frac{1}{60 t}\right)^{n}=\left(t-\frac{1}{60}\right) e^{-\frac{1}{60}}
$$

and

$$
\begin{aligned}
E\left[X_{T}^{\prime}\right] & =\sum_{n=1}^{\infty} P\left(N_{t}=n\right) E\left[X_{T}^{\prime} \mid N_{t}=n\right] \\
& =\sum_{n=1}^{\infty} P\left(N_{t}=2 n\right) E\left[X_{T}^{\prime} \mid N_{t}=2 n\right]+\sum_{n=1}^{\infty} P\left(N_{t}=2 n+1\right) E\left[X_{T}^{\prime} \mid N_{t}=2 n+1\right] \\
& \left.=\sum_{n=1}^{\infty} e^{-t} \frac{t^{2 n}}{2 n!} n\left(1-\frac{1}{60 t}\right)^{2 n}+\sum_{n=1}^{\infty} e^{-t} \frac{t^{2 n+1}}{(2 n+1)!}\right) n\left(1-\frac{1}{60 t}\right)^{2 n+1} \\
& =\frac{1}{2}\left(t-\frac{1}{60}\right) e^{-t} \operatorname{sh}\left(t-\frac{1}{60}\right)+\frac{1}{2} e^{-t}\left[\left(t-\frac{1}{60}\right)\left(\operatorname{ch}\left(t-\frac{1}{60}\right)-1\right)-\operatorname{sh}\left(t-\frac{1}{60}\right)\right] \\
& =\frac{1}{2} e^{-t}\left[\left(t-\frac{1}{60}\right)\left(\operatorname{ch}\left(t-\frac{1}{60}\right)+\operatorname{sh}\left(t-\frac{1}{60}\right)-1\right)-\operatorname{sh}\left(t-\frac{1}{60}\right)\right] \\
& =\frac{1}{2} e^{-t}\left[\left(t-\frac{1}{60}\right)\left(e^{t-\frac{1}{60}}-1\right)-\operatorname{sh}\left(t-\frac{1}{60}\right)\right]
\end{aligned}
$$

For $T=1$, this gives:

$$
\begin{gathered}
E\left[X_{T}\right]=\frac{59}{60} e^{-\frac{1}{60}} \approx \$ 0.97 \\
E\left[X_{T}^{\prime}\right]=\frac{e^{-1}}{2} \frac{59}{60}\left[\left(e^{\frac{59}{60}}-1\right)-\operatorname{sh}\left(\frac{59}{60}\right) \approx \$ 0.09\right.
\end{gathered}
$$

With $T=5$, this gives

$$
\begin{gathered}
E\left[X_{T}\right]=\frac{299}{60} e^{-\frac{1}{60}} \approx \$ 4.9 \\
E\left[X_{T}^{\prime}\right]=\frac{e^{-5}}{2}\left(\frac{299}{60}\right)\left[\left(e^{\frac{299}{60}}-1\right)-\operatorname{sh}\left(\frac{299}{60}\right) \approx \$ 2.18\right.
\end{gathered}
$$

4. First consider the variant where the score is not bounded by 2, i.e. the score is simply the score at time 5 , and denote $\widetilde{X}_{t}$ the score at time $t$ for $t=1, \ldots, 5$. The interarrival times $\tau_{i}:=S_{i}-S_{i-1}, i=1, \ldots, 5$, are i.i.d. exponential random variables, each of which is larger than $\frac{1}{60}$ with probability $e^{-\frac{1}{60}}$. Thus $\widetilde{X}_{5}$ is simply the number of success in independent trials, each of which has success probability $e^{-\frac{1}{60}}: \widetilde{X}_{5}$ follows a binomial distribution $\mathcal{B}\left(n=5, p=e^{-\frac{1}{60}}\right)$. In particular,

$$
\begin{gathered}
\pi_{0}:=P\left(\widetilde{X}_{5}=0\right)=\left(1-e^{-\frac{1}{60}}\right)^{5} \approx 1.2310^{-9} \\
\pi_{1}:=P\left(\widetilde{X}_{5}=1\right)=5\left(e^{-\frac{1}{60}}\right)\left(1-e^{-\frac{1}{60}}\right)^{4} \approx 3.6710^{-7} .
\end{gathered}
$$

Second, the actual score $X_{T}$ is given by $X_{T}:=\min \left(\widetilde{X}_{5}, 2\right)$, so that $X_{T}=0$ with probability $\pi_{0}, X_{T}=1$ with probability $\pi_{1}$, and $X_{T}=2$ with probability $1-\pi_{0}-\pi_{1}$; in particular

$$
\mathbb{E}\left[X_{T}\right]=\pi_{1}+2\left(1-\pi_{0}-\pi_{1}\right)=2-2 \pi_{0}-\pi_{1} \approx \$ 2>\$ 1
$$

Finally, it is easy to see that $X_{T}^{\prime} \leq \frac{X_{t}}{2}$, which implies

$$
\mathbb{E}\left[X_{T}^{\prime}\right] \leq \frac{\mathbb{E}\left[X_{T}\right]}{2}=\frac{2-2 \pi_{0}-\pi_{1}}{2}<\$ 1
$$

## Exercise 5.

1. Let $N$ be a non-homogeneous Poisson process with intensity function $\lambda(t):=t$.
(i) What is $\mathbb{E}\left[N_{t}\right]$ ?
(ii) What is $\mathbb{V a r}\left[N_{t}\right]$ ?
(iii) What is $\lim _{t \rightarrow \infty} \frac{N_{t}}{t}$ ?
(iv) What is $\lim _{t \rightarrow \infty} \frac{N_{t}}{t^{2}}$ ?
(v) What is $\lim _{t \rightarrow \infty} \frac{N_{t}}{t^{3}}$ ?

Hint : recall that we have shown $\frac{\text { Poisson }(\lambda t)}{t} \underset{t \rightarrow \infty}{\longrightarrow} \lambda$ a.s., and thus in probability and in distribution as well, for any non-negative real number $\lambda$.
2. Let $N$ be a non-homogeneous Poisson process with intensity function $\lambda(t)=e^{-t}$.
(i) What is $\mathbb{E}\left[N_{t}\right]$ ?
(ii) What is $\mathbb{V}$ ar $\left[N_{t}\right]$ ?
(iii) What is $\mathbb{P}\left(N_{t}=1\right)$ ?
(iv) What is $\lim _{t \rightarrow \infty} \mathbb{P}\left(N_{t}=1\right)$ ?

## Solution 5.

1. Let $N$ be a non-homogeneous Poisson process with intensity function $\lambda(t):=t$.
(i) $\mathbb{E}\left[N_{t}\right]=\int_{0}^{t} s d s=\frac{t^{2}}{2}$. Thus $N_{t}$ is a Poisson random variable with parameter $\frac{t^{2}}{2}$, and
(ii) $\operatorname{Var}\left[N_{t}\right]=\mathbb{E}\left[N_{t}\right]=\frac{t^{2}}{2}$ ?

3-5 We showed that a "true" Poisson process $\widetilde{N}_{t}$ satisfies $\frac{\widetilde{N}_{t}}{t} \xrightarrow[t \rightarrow \infty]{\text { a.s. }} \lambda$. Thus, if $\widetilde{N}_{t} \sim \mathcal{P}(\lambda t)$, then

$$
\frac{\widetilde{N}_{t}}{\lambda t} \xrightarrow[t \rightarrow \infty]{d, P} 1 .
$$

Since $N_{t} \sim \mathcal{P}\left(\frac{t^{2}}{2}\right)$, we have here $\frac{N_{t}}{\frac{t^{2}}{2}} \xrightarrow[t \rightarrow \infty]{d, P} 1$, from which follow in probability

$$
\lim _{t \rightarrow \infty} \frac{N_{t}}{t}=\infty, \lim _{t \rightarrow \infty} \frac{N_{t}}{t^{2}}=\frac{1}{2}, \lim _{t \rightarrow \infty} \frac{N_{t}}{t^{3}}=0 .
$$

2. Let $N$ be a non-homogeneous Poisson process with intensity function $\lambda(t)=e^{-t}$.
(i) $\mathbb{E}\left[N_{t}\right]=\int_{0}^{t} e^{-s} d s=1-e^{-t}$.

Thus $N_{t}$ is a Poisson random variable with parameter $1-e^{-t}$, and $\ldots$
(ii) $\ldots \operatorname{Var}\left[N_{t}\right]=\mathbb{E}\left[N_{t}\right]=1-e^{-t}$.
(iii) $\ldots \mathbb{P}\left(N_{t}=1\right)=\left(1-e^{-t}\right) e^{-\left(1-e^{-t}\right)}$
(iv) $\lim _{t \rightarrow \infty} \mathbb{P}\left(N_{t}=1\right)=e^{-1}$.

In fact, $\lim _{t \rightarrow \infty} \mathbb{P}\left(N_{t}=n\right)=\frac{e^{-n}}{n!}$, which means that $N$ converges (in distribution) to a Poisson distribution with parameter 1.

