Exercises \# 8: Continuous-time Markov chains

Léo Neufcourt

November 6, 2019

Due at $12: 40$ pm on Friday, November 15. Python codes must be sent by email before due time. Each problem is worth 10 points, please do all problems.

Exercise 1. Give an example of a continuous-time Markov chain X with more than one state, and explain why it is a continuous-time Markov chain. What is the expected time before the first transition of X occur? What is the transition matrix Q associated with X ? (Recall that $q_{i, j}$ is the probability that X, starting in state i, will make its next transition to state j). What is the asymptotic behavior of the process (long-run proportion of time spent in each state, limiting distribution)?

Bonus: write a Python code to simulate 10 paths of this continuous time Markov chain on a well-chosen time interval, and plot them on the same figure. Plot also as a function of time the proportions of time spent in each state.

Exercise 2. Please do Problem 5 page 412 in the textbook.
Exercise 3. Please do Problem 9 page 413 in the textbook.
Exercise 4. Customers and taxis arrive to a taxi station according to independent Poisson processes with respective rates of two and three per minute. Taxis wait regardless of the number of other taxis present. However, a customer who does not find any taxi waiting when he arrives leaves immediately. What are:
(a) the average number of taxis waiting?
(b) the proportion of customers finding a taxi when they arrive?

Exercise 5. Customers arrive to a shop according to a Poisson process N with parameter λ. Customers are served one by one, in the order in which they arrived, and the service times Z_{i} for each customer i follow i.i.d. exponential random variables with parameter μ, which are independent from N. We denote X_{t} the number of customers in the line at time $t \geq 0, S_{1}, S_{2}, \ldots$ the jump times of X (i.e. $S_{0}:=0$, $S_{n}:=\min \left\{t \geq S_{n-1}: S_{t} \neq S_{n-1}\right\}, n \geq 1$) as well as $\tau_{i}:=S_{i}-S_{i-1}, n \geq 1$ the interarrival times.

1. Get convinced that S_{1}, S_{2}, \ldots are the jump times of N. What is the (joint) distribution of $\tau_{1}, \tau_{2}, \ldots$? What is the distribution of $S_{n}, n \geq 0$?
2. What is the distribution of τ_{n+1} given $X_{S_{n}}=0$?
3. What is the distribution of τ_{n+1} given $X_{S_{n}}>0$?
4. What is the distribution of $X_{S_{n+1}}$ given $X_{S_{n}}$?
5. What is the transition matrix $Q=\left(q_{i j}\right)_{i, j}$ associated with X (as defined in Problem 1)? What are the transition rates $p_{i, j}$ of $X, 1 \neq j$? What is the generator R of the continuous-time Markov chain X?
6. Under which condition is the continuous-time Markov chain X transient? recurrent? positive recurrent?
7. Show that for every $C>0, \pi_{k}:=C\left(\frac{\lambda}{\mu}\right)^{n}$ is a stationary measure, i.e. $\pi \geq 0$ and $\pi P=P$.
8. Does X have a stationary distribution (i.e. a stationary measure π with $\sum_{k \geq 1} \pi_{k}=$ $1)$?
9. Does X have a limiting distribution?
