Exercises # 8: Continuous-time Markov chains

Léo Neufcourt

November 6, 2019

Due at 12:40pm on Friday, November 15. Python codes must be sent by email before due time. Each problem is worth 10 points, please do all problems.

Exercise 1. Give an example of a continuous-time Markov chain X with more than one state, and explain why it is a continuous-time Markov chain. What is the expected time before the first transition of X occur? What is the transition matrix Q associated with X? (Recall that $q_{i,j}$ is the probability that X, starting in state i, will make its next transition to state j). What is the asymptotic behavior of the process (long-run proportion of time spent in each state, limiting distribution)?

Bonus: write a Python code to simulate 10 paths of this continuous time Markov chain on a well-chosen time interval, and plot them on the same figure. Plot also as a function of time the proportions of time spent in each state.

Exercise 2. Please do Problem 5 page 412 in the textbook.

Exercise 3. Please do Problem 9 page 413 in the textbook.

Exercise 4. Customers and taxis arrive to a taxi station according to independent Poisson processes with respective rates of two and three per minute. Taxis wait regardless of the number of other taxis present. However, a customer who does not find any taxi waiting when he arrives leaves immediately. What are:

(a) the average number of taxis waiting?

(b) the proportion of customers finding a taxi when they arrive?

Exercise 5. Customers arrive to a shop according to a Poisson process N with parameter λ . Customers are served one by one, in the order in which they arrived, and the service times Z_i for each customer i follow i.i.d. exponential random variables with parameter μ , which are independent from N. We denote X_t the number of customers in the line at time $t \geq 0$, S_1, S_2, \ldots the jump times of X (i.e. $S_0 := 0$, $S_n := \min\{t \geq S_{n-1} : S_t \neq S_{n-1}\}, n \geq 1$) as well as $\tau_i := S_i - S_{i-1}, n \geq 1$ the interarrival times.

- 1. Get convinced that $S_1, S_2, ...$ are the jump times of N. What is the (joint) distribution of $\tau_1, \tau_2, ...$? What is the distribution of $S_n, n \ge 0$?
- 2. What is the distribution of τ_{n+1} given $X_{S_n} = 0$?
- 3. What is the distribution of τ_{n+1} given $X_{S_n} > 0$?
- 4. What is the distribution of $X_{S_{n+1}}$ given X_{S_n} ?
- 5. What is the transition matrix $Q = (q_{ij})_{i,j}$ associated with X (as defined in Problem 1)? What are the transition rates $p_{i,j}$ of X, $1 \neq j$? What is the generator R of the continuous-time Markov chain X?
- 6. Under which condition is the continuous-time Markov chain X transient? recurrent? positive recurrent?
- 7. Show that for every C > 0, $\pi_k := C(\frac{\lambda}{\mu})^n$ is a stationary measure, i.e. $\pi \ge 0$ and $\pi P = P$.
- 8. Does X have a stationary distribution (i.e. a stationary measure π with $\sum_{k\geq 1} \pi_k = 1$)?
- 9. Does X have a limiting distribution?