
Exercises # 8: Continuous-time Markov chains

Léo Neufcourt

November 14, 2019

Due at 12:40pm on Friday, November 15. Python codes must be sent by email
before due time. Each problem is worth 10 points, please do all problems.

Exercise 1. Give an example of a continuous-time Markov chain X with more than
one state, and explain why it is a continuous-time Markov chain. What is the expected
time before the first transition of X occur? What is the transition matrix Q associated
with X? (Recall that qi,j is the probability that X, starting in state i, will make its
next transition to state j). What is the asymptotic behavior of the process (long-run
proportion of time spent in each state, limiting distribution)?

Bonus: write a Python code to simulate 10 paths of this continuous time Markov
chain on a well-chosen time interval, and plot them on the same figure. Plot also
as a function of time the proportions of time spent in each state.

Solution 1. We have seen that a continuous time Markov chain can be defined as a
process X such that, if it is at any time t in state i, it will remain in state i for a
time τi ∼ exp(λi), and at time t + τi will make a transition to a state j according to
Markov transition probabilities Q = (qi,j)i,j. Thus a continuous time Markov chain is
determined by a family of non-negative rates (λi)i≥0 and a Markov transition matrix
Q. The simplest continuous time Markov chain with more than one state is a two-state
continuous time Markov chain, which we have studied in class: the only 2 × 2 matrix
Q with qi,i = 0 and

∑
j qi,j = 1 is

Q =

[
0 1
1 0

]
Thus the distribution of a two-state continuous time Markov chain is entirely deter-
mined by the transition rates λ0 and λ1 respectively from states 0 and 1. We have also
seen that the R matrix is

R =

[
−λ0 λ0
λ1 −λ1

]
Since the λs are bounded by their maximum, the process has no explosion; Rπ = 0
has a unique solution with π0 + π1 = 1, given by π =

(
λ1

λ0+λ1
, λ1
λ0+λ1

)
. Thus this chain

is ergodic, and converges to π in distribution by the ergodic theorem; the long-run
proportion of time spent is each state is also given by π.
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Exercise 2. Please do Problem 5 page 412 in the textbook.

Solution 2.

(a) Yes: the number of individuals infected between time s and t depends in the past
only through the number of persons infected at time s.

(b) This is a pure birth process (transitions are only possible from states n to n + 1,
n ≥ 0).

(c) Let Si be the time of the ith infection. E[Si − Si−1] = 1
λi

, where λi is the rate of

infection given that i individual are currently infected. Thus E[SN ] =
∑N−1

i=1
1
λi

.

Given that a contact occur in a population with i infected individuals and N−i non-
infected individuals, it will lead to the infection of a new individual with probability
p i(N−i)

( 2
N)

, yielding λi := 2λp i(N−i)
N(N−1) and

E[SN |X0 = 1] =
1

2λp

N−1∑
i=1

N(N − 1)

i(N − i)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Exercise 3. Please do Problem 9 page 413 in the textbook.

Solution 3. Since the death rate is constant, it follows that as long as the system is
not empty (not is state 0) the number of deaths in any interval of length t will be a
Poisson random variable with mean µt, from which

pi,j(t) := P (Xt = j|X0 = i) =


0 if i < j

e−µt (µt)
i−j

(i−j)! if 0 < j ≤ i

e−µt
∑

k≥i
(µt)k

k!
if j = 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Exercise 4. Customers and taxis arrive to a taxi station according to independent
Poisson processes with respective rates of two and three per minute. Taxis wait regard-
less of the number of other taxis present. However, a customer who does not find any
taxi waiting when he arrives leaves immediately. What are:

(a) the average number of taxis waiting?
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(b) the proportion of customers finding a taxi when they arrive?

Solution 4. See Exercise 24 of the textbook for the classical version of this classical
problem.

(a) The number of taxis waiting (let us call it X) is a birth and death process with
constant birth and death rates λn = λ = 3, µn = µ = 2; its mean satisfies

M(t+ h)−M(t) = (λ− µ)h+ o(h),

whence M ′(t) = (λ− µ) and M(t) = M(0) + (λ− µ)t = t: taxis will almost surely
queue up towards an infinite line.

(b) At any time t the proportion of customers finding a taxi waiting at their arrival
is (1 − p0(t)), where p0(t) = P (Xt = 0|X0 = 0) is the probability that the birth
and death process X is in state 0 at time t. Computing explicitly p0(t) is slightly
delicate, however for t ≥ 1 we have

Xt

t
=

1

t

[t]−1∑
k=1

(Xk+1 −Xk) + (Xt −X[t])
a.s.−−−→
t→∞

(λ− µ)

which shows that Xt
a.s.−−−→
t→∞

∞; in particular p0(t) = p(Xt = 0) −−−→
t→∞

0 and the

proportion of customers finding a taxi waiting at their arrival converges to 1.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Exercise 5. Customers arrive to a shop according to a Poisson process N with param-
eter λ, which jump times we denote S1, S2, ... (i.e. S0 := 0, Sn := min{t ≥ Sn−1 : Xt 6=
XSn−1}, n ≥ 1) and interarrival times τi := Si−Si−1, n ≥ 1. Customers are served one
by one, in the order in which they arrived, and the service times Zi for each customer
i follow i.i.d. exponential random variables with parameter µ, which are independent
from N . We denote Xt the number of customers in the line at time t ≥ 0.

1. What is the (joint) distribution of τ1, τ2, ...? What is the distribution of Sn, n ≥ 0?

2. What is the distribution of τn+1 given XSn = 0?

3. What is the distribution of τn+1 given XSn > 0?

4. What is the distribution of XSn+1 given XSn?

5. What is the transition matrix Q = (qij)i,j associated with X (as defined in Prob-
lem 1)? What are the transition rates pi,j of X, ı 6= j? What is the generator R
of the continuous-time Markov chain X?
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6. Under which condition is the continuous-time Markov chain X transient? recur-
rent? positive recurrent?

7. Show that for every C > 0, πk := C(λ
µ
)n is a stationary measure, i.e. π ≥ 0 and

πP = P .

8. Does X have a stationary distribution (i.e. a stationary measure π with
∑

k≥1 πk =
1)?

9. Does X have a limiting distribution?

Solution 5.

0. The jump times of X are the jump times of N as well as the times at which
services end! Let us denote 0 = S̃0 as well as S̃1, S̃2, ... the jump times of X, and
τi := Si − Si−1, n ≥ 1 its interarrival times.

1. τ1, τ2, ... are i.i.d. exponential random variables with parameter λ. As the sum
of n i.i.d. exponential random variables with parameter λ, Sn has a gamma
distribution with parameters n and λ.

2-3. τn+1 is independent from XSn, thus from the events XSn = 0 and XSn > 0. More
interesting is the distribution of τ̃n+1 given XS̃n

.

• Given XS̃n
= 0, τ̃n+1 is the time of the next arrival, namely an exponential

random variable with parameter λ.

• Given XS̃n
> 0, τ̃n+1 is the time of the next arrival or the time at which

the service of the customer being currently served will be finished, whichever
comes first. This is the minimum of two independent exponential random
variables with respective parameters λ and µ, hence an exponential random
variable with parameter λ+ µ.

4. Here again the quantities of interest are the XS̃n
s. It follows from the preceding

questions that XS̃n+1
is the one step transition from XS̃n

with the matrix

Q =



0 1 0 0 . . . 0 . . .

q 0 p
. . .

...

0 q
. . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . p
. . .

0 . . . . . . 0 q 0
. . .

...
. . . . . . . . .


where p := λ

λ+µ
=: 1− q.
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5. The transition matrix associated with X is precisely the matrix Q in the preceding
question. The transition rate from state i to state j are viqi,j where v0 = λ and
vi = λ + µ (i 6= 0). Thus the generator R of the continuous-time Markov chain
X is

R =



−λ λ 0 0 . . . 0 . . .

µ −(λ+ µ) λ
. . .

...

0 µ
. . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . λ
. . .

0 . . . . . . 0 µ −(λ+ µ)
. . .

...
. . . . . . . . .


6. This is an irreducible Markov chain, so that all states share the same nature:

transient, null recurrent or positive recurrent. We have seen in Problem 4 that,
when λ > µ, then X →∞; in particular all states are transient is this case.

In fact, transience and recurrence of the states of the continuous time Markov
chain are properties of the associated discrete time Markoc chain, i.e. of the ma-
trix Q. Thus we know directly from our study of the discrete time random walks
that the states of X are recurrent if and only if p ≤ q. The next questions will
show that if λ < µ, the chain is positive recurrent (because X has a stationary
distribution); and if λ = µ the chain is null recurrent (because X does not have
a stationary distribution).

7. Plugging in πk := C(λ
µ
)n shows that πR = 0 (i.e. πV Q = π) for any λ, µ > 0.

Conversely any family (πj)j≥0 satisfying πR = 0 satisfies λπ0 = µπ1 and

λπj−1 + µπj+1 = (λ+ µ)πj

for j ≥ 1, which non-negative solutions are of the form C(λ
µ
)n, C ≥ 0 when

λ 6= µ, and (C +C ′n) when λ = µ (see the classical theory of second order linear
sequences, e.g. MIT Course notes).

8. The chain will have a stationary distribution if and only if we can choose C such
that

∑
j πj = 1. This is possible if and only if λ < µ, with in that case

πj =
1

µ− λ
(λ
µ

)j.

9. As events occur at rate bounded by λ+µ <∞ the continuous time Markov chain
X has no explosion; additionally we have just shown that when λ < µ, there exist
a unique stationary distribution. Thus when λ < µ, X is ergodic and converges
to its stationary distribution. When λ ≥ µ, X converges to ∞ a.s.
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https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/MIT6_042JF10_chap10.pdf

