STT886 : Midterm # 1: Markov Chains

Léo Neufcourt

October 7, 2019

Each problem is worth 10 points, and 40 points gives a full grade – you can do as many problems as you wish, but points above 40 will count only towards personal satisfaction.

Exercise 1 (MCQ). Right answer = +1 point; wrong answer = -1 point; blank answer = 0 points; however, the total grade for the problem cannot be lower than 0.

Let S be a one dimensional simple random walk on \mathbb{Z} , i.e. $S_n := \sum_{i=1}^n Z_i$, n = 1, 2, ... where Z_i are i.i.d. random variables taking values -1 and +1 with probability 0.5. Are the following stochastic processes Markov chains? Please write Yes, No or leave blank.

- $(i) \ (S_n)_{n \ge 0} \qquad \dots \qquad \dots$
- (*ii*) $(S_n + n)_{n \ge 0}$ _____
- (*iii*) $(S_n + n^2)_{n \ge 0}$
- $(iv) (S_n + 10^n)_{n \ge 0}$
- $(v) (S_n + (-1)^n)_{n \ge 0}$
- $(vi) \; (|S_n|)_{n \ge 0} \qquad \dots$
- (vii) $(S_n^2 n)_{n \ge 0}$
- (viii) $(S_{2n})_{n\geq 0}$ -----
- $(ix) \ (\sum_{k=0}^{n} S_k)_{n \ge 0}$ ------
- $(x) \left((-1)^n \cos(\frac{n\pi}{2019}) \right)_{n \ge 0}$ ------

Exercise 2. Give the transition matrix of a five-state Markov chain of your choice such that

- 1. There are exactly two communication classes
- 2. Exactly one of the two classes is recurrent
- 3. The recurrent class is aperiodic
- 4. There are no absorbing states
- 5. Exactly one state in the recurrent class is accessible from a state in the transient class.

Does this Markov chain have a stationary distribution? If yes, is it unique? Does it have a limiting distribution?

* * * * * * * * * * * * * * * *

Exercise 3. Consider a gambler starting with an initial wealth of $\$x, x \in \mathbb{N}$, and then placing successively independent bets, at each of which he wins or loses \$1 with probabilities p and q := 1 - p, respectively. The gambler stops playing when (if and only if) his wealth reaches \$0 or \$y for a given $y \in \mathbb{N}$, y > x. Let S_n denote the total wealth after the n^{th} bet, $T := T(x, y) := \inf\{n \ge 0 : S_n = 0 \text{ or } S_n = y\}$ the time when the game stops, and let $\phi(x) := \phi(x, y) := P(S_T = y)$, i.e. the probability that the gambler doesn't end the game ruined, starting with \$x.

- 1. Argue that S is a Markov chain and give its state space and transition probabilities. Describe the communication classes, their nature (recurrent or transient) and periodicity.
- 2. Find a recursive formula for $\phi(x)$ by conditioning with respect to the outcome of the first step of the Markov chain.
- 3. If $p = q = \frac{1}{2}$, show that $\phi(x) = \frac{x}{y}$.
- 4. If $p = q = \frac{1}{2}$, does the Markov chain S have any stationary distribution? any limiting distribution?
- 5. If $p = q = \frac{1}{2}$ and x = 3 and y = 4; what is the expected number of time periods the gambler's wealth be exactly \$1?

Exercise 4. Let X_n be the discrete time stochastic process defined by $X_0 = 1$, $X_{n+1} = \sum_{i=1}^{X_n} Z_i^{(n+1)}$, $n \ge 0$, where $Z_i^{(n)}$, $i \ge 1$, $n \ge 1$, are *i.i.d.* non-negative integer random variables with expectation μ and variance σ^2 .

- (i) Is X a Markov chain? Justify your answer.
- (ii) What is $\mathbb{E}[X_{n+1}|X_n], n \geq 1$?
- (iii) Deduce a general expression for $\mathbb{E}[X_n]$, $n \geq 1$.

**** ****

Exercise 5. Let S be the "generalized" random walk on the signed integers \mathbb{Z} defined by $S_n := \sum_{i=1}^n Z_i, n \in \mathbb{N}$, where Z_i are *i.i.d.* integer random variables with finite expectation. Argue that X is a Markov chain, and show that if $\mathbb{E}[Z_1] \neq 0$ then all states are transient.