STT886 : Midterm \# 1: Markov Chains

Léo Neufcourt

October 7, 2019

Each problem is worth 10 points, and 40 points gives a full grade - you can do as many problems as you wish, but points above 40 will count only towards personal satisfaction.

Exercise 1 (MCQ). Right answer $=+1$ point; wrong answer $=-1$ point; blank answer $=0$ points; however, the total grade for the problem cannot be lower than 0.

Let S be a one dimensional simple random walk on \mathbb{Z}, i.e. $S_{n}:=\sum_{i=1}^{n} Z_{i}, n=$ $1,2, \ldots$ where Z_{i} are i.i.d. random variables taking values -1 and +1 with probability 0.5. Are the following stochastic processes Markov chains? Please write Yes, No or leave blank.
(i) $\left(S_{n}\right)_{n \geq 0}$
(ii) $\left(S_{n}+n\right)_{n \geq 0}$
(iii) $\left(S_{n}+n^{2}\right)_{n \geq 0}$

(iv) $\left(S_{n}+10^{n}\right)_{n \geq 0}$
(v) $\left(S_{n}+(-1)^{n}\right)_{n \geq 0}$
(vi) $\left(\left|S_{n}\right|\right)_{n \geq 0}$ \qquad
(vii) $\left(S_{n}^{2}-n\right)_{n \geq 0}$
(viii) $\left(S_{2 n}\right)_{n \geq 0}$
(ix) $\left(\sum_{k=0}^{n} S_{k}\right)_{n \geq 0}$
(x) $\left((-1)^{n} \cos \left(\frac{n \pi}{2019}\right)\right)_{n \geq 0}$

Solution 1 (MCQ). In each case, when the given process X is a Markov chain we give its transition probabilities $p_{i, j}$ which are non-zero, and when it is not a Markov chain we give a counter example where the Markov property is broken; when writing conditional probabilities we need to check that the conditioning event has positive probability).
(i) $\left(S_{n}\right)_{n \geq 0} \quad$ Yes: $p_{i, i+1}=p_{i, i-1}=\frac{1}{2}, i \in \mathbb{Z}$
(ii) $\left(S_{n}+n\right)_{n \geq 0} \quad$ Yes: $p_{i, i}=p_{i, i+2}=\frac{1}{2}, i \in \mathbb{Z}$
(iii) $\left(S_{n}+n^{2}\right)_{n \geq 0} \quad$ No:

$$
\frac{1}{2}=p\left(X_{1}=0 \mid X_{0}=0\right) \neq p\left(X_{2}=0 \mid X_{1}=0, X_{0}=0\right)=0
$$

with

$$
P\left(X_{1}=0, X_{0}=0\right) \geq P\left(S_{1}=-1, S_{0}=0\right)>0
$$

(iv) $\left(S_{n}+10^{n}\right)_{n \geq 0} \quad$ Yes: $p_{10^{n}+k, 10^{n+1}+k+1}=p_{10^{n}+k, 10^{n+1}+k-1}=\frac{1}{2},|k| \leq n$
(v) $\left(S_{n}+(-1)^{n}\right)_{n \geq 0} \quad$ Yes:

$$
p_{2 i, 2 i-1}=p_{2 i, 2 i-3}=\frac{1}{2}, p_{2 i+1,2 i+2}=p_{2 i+1,2 i+4}=\frac{1}{2}, i \in \mathbb{Z}
$$

(vi) $\left(\left|S_{n}\right|\right)_{n \geq 0} \quad$ Yes: $p_{0,1}=1, p_{i, i-1}=p_{i, i-1}=\frac{1}{2}, i \geq 0$.
(vii) $\left(S_{n}^{2}-n\right)_{n \geq 0} \quad$ No:

$$
\begin{gathered}
1=P\left(X_{1}=0 \mid X_{0}=0\right) \\
\neq P\left(X_{5}=0 \mid X_{0}=0, X_{1}=0, X_{2}=2, X_{3}=6, X_{4}=0\right) \\
=P\left(X_{5}=0\right)=0
\end{gathered}
$$

with
$P\left(X_{0}=0, X_{1}=0, X_{2}=2, X_{3}=6, X_{4}=0\right) \geq P\left(S_{1}=1, S_{2}=2, S_{3}=3, S_{4}=2\right)>0$.
(viii) $\left(S_{2 n}\right)_{n \geq 0} \quad$ Yes: $p_{i, i}=2 p_{i, i+2}=2 p_{i, i-2}=\frac{1}{2}$
(ix) $\left(\sum_{k=0}^{n} S_{k}\right)_{n \geq 0} \quad$ No:
$\frac{1}{2}=\mathbb{P}\left(X_{3}=0 \mid X_{2}=1, X_{1}=1, X_{0}=0\right) \neq \mathbb{P}\left(X_{2}=0 \mid X_{1}=1, X_{0}=0\right)=0$,
with

$$
P\left(X_{2}=1, X_{1}=1, X_{0}=0\right) \geq P\left(S_{2}=0, S_{1}=1, S_{0}=0\right)>0
$$

Exercise 2. Give the transition matrix of a five-state Markov chain of your choice such that

1. There are exactly two communication classes
2. Exactly one of the two classes is recurrent
3. The recurrent class is aperiodic
4. There are no absorbing states
5. Exactly one state in the recurrent class is accessible from a state in the transient class.

Does this Markov chain have a stationary distribution? If yes, is it unique? Does it have a limiting distribution?

Solution 2. We can consider the following transition matrix:

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

There are two communication classes, $T=\{1,2,3\}$ and $R=\{4,5\}$. T is transient and has period 2, R is recurrent and aperiodic; exactly one state in R (state 4) is accessible from a state in T (state 3). since there is a finite number of states R is positive recurrent, and thus the Markov chain restricted to the recurrent class R has a unique stationary distribution, $\pi_{4}=\pi_{5}=\frac{1}{2}$. The stationary distribution of the whole chain can only attribute weights to recurrent states, so it is given by $\left(0,0,0, \frac{1}{2}, \frac{1}{2}\right)$. After spending a finite time in the transient states the Markov chain converges to its stationary distribution (i.e. the stationary distribution is also a limiting distribution).

Exercise 3. Consider a gambler starting with an initial wealth of $\$ x, x \in \mathbb{N}$, and then placing successively independent bets, at each of which he wins or loses $\$ 1$ with probabilities p and $q:=1-p$, respectively. The gambler stops playing when (if and only if) his wealth reaches $\$ 0$ or $\$ y$ for a given $y \in \mathbb{N}$, $y>x$. Let S_{n} denote the total wealth after the $n^{\text {th }}$ bet, $T:=T(x, y):=\inf \{n \geq$ $0: S_{n}=0$ or $\left.S_{n}=y\right\}$ the time when the game stops, and let $\phi(x):=\phi(x, y):=$ $P\left(S_{T}=y\right)$, i.e. the probability that the gambler doesn't end the game ruined, starting with $\$ x$.

1. Argue that S is a Markov chain and give its state space and transition probabilities. Describe the communication classes, their nature (recurrent or transient) and periodicity.
2. Find a recursive formula for $\phi(x)$ by conditioning with respect to the outcome of the first step of the Markov chain.
3. If $p=q=\frac{1}{2}$, show that $\phi(x)=\frac{x}{y}$.
4. If $p=q=\frac{1}{2}$, does the Markov chain S have any stationary distribution? any limiting distribution?
5. If $p=q=\frac{1}{2}$ and $x=3$ and $y=4$; what is the expected number of time periods the gambler's wealth be exactly $\$ 1$?

Solution 3.

1-4. See the textbook and HW4 for this classical problem.
5. The question is about the expected time spent in a transient state. With $y=4$ we have 4 states $\{0,1,2,3\}$ where the states 0,4 are recurrent and 1,2 transient. The matrix giving the transitions between transient states is

$$
P_{T}=\left[\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right]
$$

so that

$$
S_{T}:=\left(I_{T}-P_{T}\right)^{-1}=\frac{4}{3}\left[\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right] .
$$

With $x=2$, the gambler will spend in average $s_{2,1}=\frac{2}{3}$ time periods in the transient state 1 corresponding to a current wealth of $\$ 1$.

Exercise 4. Let X_{n} be the discrete time stochastic process defined by $X_{0}=1$, $X_{n+1}=\sum_{i=1}^{X_{n}} Z_{i}^{(n+1)}, n \geq 0$, where $Z_{i}^{(n)}, i \geq 1, n \geq 1$, are i.i.d. non-negative integer random variables with expectation μ and variance σ^{2}.
(i) Is X a Markov chain? Justify your answer.
(ii) What is $\mathbb{E}\left[X_{n+1} \mid X_{n}\right], n \geq 1$?
(iii) Deduce a general expression for $\mathbb{E}\left[X_{n}\right], n \geq 1$.

Solution 4. See the textbook and lecture notes for this classical problem.

Exercise 5. Let S be the "generalized" random walk on the signed integers \mathbb{Z} defined by $S_{n}:=\sum_{i=1}^{n} Z_{i}, n \in \mathbb{N}$, where Z_{i} are i.i.d. integer random variables with finite expectation. Argue that X is a Markov chain, and show that if $\mathbb{E}\left[Z_{1}\right] \neq 0$ then all states are transient.

Solution 5. By the strong law of large numbers $\frac{S_{n}}{n} \xrightarrow[\text { a.s. }]{n \rightarrow \infty} \mathbb{E}\left[Z_{1}\right]$. Thus if $\mathbb{E}\left[Z_{1}\right] \neq 0$, e.g. $\mathbb{E}\left[Z_{1}\right]>0$, we have $S_{n} \xrightarrow[\text { a.s. }]{n \rightarrow \infty}+\infty$ a.s. This means that S will spend a finite number of steps in any finite subset of states: since every state is contained in a finite subset of states, all states are transient.

