Thanksgiving Quizz

Let N be a Poisson process with parameter 2, with N_t representing the number of neutrinos arrived in a neutrino detector between time 0 and time t weeks. Select the only right answer.

- 1. Which statement is the most true?
 - (a) N has independent and stationary increments
 - (b) N_t has a Poisson distribution for every $t \ge 0$
 - (c) Both
- 2. What is the probability that, after one week of observation, exactly one neutrino has arrived in the detector?
 - (a) e^{-2} (b) $2e^{-2}$ (b) 1
- 3. What is the expected number of neutrino that will arrive in the detector within two weeks time from today?
 - (a) 1 (b) 2 (c) 4
- 4. What is the expected number of neutrino that will arrive in the detector between January 1, 2027 (12am) and January 15, 2027 (12am)?
 - (a) 1 (b) 2 (c) 4
- 5. The arrival time of the 10^{th} neutrino in the detector follows a
 - (a) Poisson (b) Exponential (c) Gamma

distribution.

- 6. The time between the arrival of the 10^{th} neutrino and the arrival of the 12^{th} follows a
 - (a) Gamma distribution with shape parameter 2 and rate parameter 2 (and mean 1)
 - (a) Exponential distribution with parameter 2 (and mean $\frac{1}{2}$)
 - (b) Exponential distribution with parameter 1 (and mean 1)